Discussion of

"I Theory of Money"

by Markus Brunnermeier and Yuly Sannikov

Javier Bianchi

Minneapolis Fed & NBER

Central Bank of Korea

Not the opinion of the Federal Reserve

• Goal: a unified framework to study financial stability and price stability

- Goal: a unified framework to study financial stability and price stability
- Interesting paper at the intersection of money, banking & macro!
- Can't do justice to the paper in 10'...

Outline of Discussion

- Key Mechanisms
- Illustration in Bewley's model of fiat money, based on Sargent-Wallace 1982, Ljungqvis-Sargent, CH 18
 - Outside money only
 - Inside and outside money
 - Effects of shocks to borrowing constraints and risk
- Comments
 - Application/relevance of mechanism
 - Determinacy

• Intermediaries:

Liabilities denominated in monetary units

Exposed to aggregate shocks

• Intermediaries:

Liabilities denominated in monetary units Exposed to aggregate shocks

• Negative aggregate shocks leads to losses of intermediaries

• Intermediaries:

Liabilities denominated in monetary units Exposed to aggregate shocks

- Negative aggregate shocks leads to losses of intermediaries
 - Fire sales leading to lower asset prices

 \rightarrow further losses in asset side

• Intermediaries:

Liabilities denominated in monetary units Exposed to aggregate shocks

- Negative aggregate shocks leads to losses of intermediaries
 - I Fire sales leading to lower asset prices

 \rightarrow further losses in asset side

② Lower money creation leading to lower price level
 → further losses on liability side

• Intermediaries:

Liabilities denominated in monetary units Exposed to aggregate shocks

- Negative aggregate shocks leads to losses of intermediaries
 - I Fire sales leading to lower asset prices

 \rightarrow further losses in asset side

- ② Lower money creation leading to lower price level
 → further losses on liability side
- Downward spirals reinforce each other

• Intermediaries:

Liabilities denominated in monetary units Exposed to aggregate shocks

- Negative aggregate shocks leads to losses of intermediaries
 - I Fire sales leading to lower asset prices
 - \rightarrow further losses in asset side
 - ② Lower money creation leading to lower price level
 → further losses on liability side
- Downward spirals reinforce each other
- Price stability and financial stability go hand in hand

- Uninsurable idiosyncratic income shocks y_t . Deterministic agg. dynamics
- Only outside money. Central bank sets $\{M_t^s\}_0^\infty$
- Households

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$
$$c_t + \frac{M_{t+1}}{P_t} = y_t + \frac{M_t}{P_t} + T_t, \qquad M_{t+1} \ge 0$$

 \sim

- Uninsurable idiosyncratic income shocks y_t . Deterministic agg. dynamics
- Only outside money. Central bank sets $\{M_t^s\}_0^\infty$
- Households

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

$$c_t + m_{t+1}\pi_{t+1} = y_t + m_t + \tau_t, \qquad m_{t+1} \ge 0$$

- Uninsurable idiosyncratic income shocks y_t . Deterministic agg. dynamics
- Only outside money. Central bank sets $\{M_t^s\}_0^\infty$
- Households

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

$$c_t + m_{t+1}\pi_{t+1} = y_t + m_t + \tau_t, \qquad m_{t+1} \ge 0$$

• Market clearing
$$\int \hat{m}_t(m_t, y_t) d\Gamma_t(m_t, y_t) = \frac{M_{t+1}^s}{P_{t+1}}$$

- Uninsurable idiosyncratic income shocks y_t . Deterministic agg. dynamics
- Only outside money. Central bank sets $\{M_t^s\}_0^\infty$
- Households

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

$$c_t + m_{t+1}\pi_{t+1} = y_t + m_t + \tau_t, \qquad m_{t+1} \ge 0$$

• Market clearing $\int \hat{m}_t(m_t, y_t) d\Gamma_t(m_t, y_t) = \frac{M_{t+1}^s}{P_{t+1}}$

• At SS with $P_t = P$, $\mathbb{E}\hat{m} = \frac{M}{P} \Rightarrow$ Quantity theory of money

• Private money creation b_{t+1} (real notes)

$$c_{t} + \underbrace{\frac{M_{t+1}}{P_{t}} + b_{t+1}}_{a_{t+1}} = \underbrace{b_{t} + \frac{M_{t}}{P_{t}}}_{a_{t}} + b_{t}r + y_{t} + T_{t}, \quad b_{t+1} \ge -\phi, M_{t+1} \ge 0$$

• Private money creation b_{t+1} (real notes)

$$c_{t} + \underbrace{\frac{M_{t+1}}{P_{t}} + b_{t+1}}_{a_{t+1}} = \underbrace{b_{t} + \frac{M_{t}}{P_{t}}}_{a_{t}} + b_{t}r + y_{t} + T_{t}, \quad b_{t+1} \ge -\phi, M_{t+1} \ge 0$$

• Inside and outside money are perfect substitutes

• Private money creation b_{t+1} (real notes)

$$c_{t} + \underbrace{\frac{M_{t+1}}{P_{t}} + b_{t+1}}_{a_{t+1}} = \underbrace{b_{t} + \frac{M_{t}}{P_{t}}}_{a_{t}} + b_{t}r + y_{t} + T_{t}, \quad b_{t+1} \ge -\phi, M_{t+1} \ge 0$$

• Inside and outside money are perfect substitutes

 \rightarrow Monetary equilibrium $1 + r_t = \frac{P_{t+1}}{P_t} \rightarrow$ Friedman Rule

• Private money creation b_{t+1} (real notes)

$$c_{t} + \underbrace{\frac{M_{t+1}}{P_{t}} + b_{t+1}}_{a_{t+1}} = \underbrace{b_{t} + \frac{M_{t}}{P_{t}}}_{a_{t}} + b_{t}r + y_{t} + T_{t}, \quad b_{t+1} \ge -\phi, M_{t+1} \ge 0$$

• Inside and outside money are perfect substitutes

 \rightarrow Monetary equilibrium $1 + r_t = \frac{P_{t+1}}{P_t} \rightarrow$ Friedman Rule

• Market clearing $\int \hat{a}_t(a, y) d\Gamma_t(a, y)) = \frac{M_{t+1}^s}{P_{t+1}}$

$$\int (\hat{a}(a,y))d\Gamma(a,y)) = \frac{M^s}{P}, \quad b_{t+1} \ge -\phi$$

$$\int (\hat{a}(a,y))d\Gamma(a,y)) = \frac{M^s}{P}, \quad b_{t+1} \ge -\phi$$

() What are the effects of tightening borrowing constraint $\downarrow \phi$?

• Lower private money creation, $\Rightarrow \downarrow P$

$$\int (\hat{a}(a,y))d\Gamma(a,y)) = \frac{M^s}{P}, \quad b_{t+1} \ge -\phi$$

- Lower private money creation, $\Rightarrow \downarrow P$
- **2** Increase in idiosyncratic risk?

$$\int (\hat{a}(a,y))d\Gamma(a,y)) = \frac{M^s}{P}, \quad b_{t+1} \ge -\phi$$

- Lower private money creation, $\Rightarrow \downarrow P$
- **2** Increase in idiosyncratic risk?
 - Lower private money creation, $\Rightarrow \downarrow P$

$$\int (\hat{a}(a,y))d\Gamma(a,y)) = \frac{M^s}{P}, \quad b_{t+1} \ge -\phi$$

- Lower private money creation, $\Rightarrow \downarrow P$
- Increase in idiosyncratic risk?
 - Lower private money creation, $\Rightarrow \downarrow P$
 - * Credit crunches lead to deflation Feedback in paper require $\downarrow P_t$

• Impressive!

- Impressive! Aggregate shocks, not just stationary eq..
- Richer portfolio: trade in safe and risky assets
- Networth of intermediaries determine endogenous risk and money creation
- Feedback between money multiplier and financial sector

- Impressive! Aggregate shocks, not just stationary eq..
- Richer portfolio: trade in safe and risky assets
- Networth of intermediaries determine endogenous risk and money creation
- Feedback between money multiplier and financial sector
- \bullet Extensions with long-term debt \rightarrow valuation effects

- Impressive! Aggregate shocks, not just stationary eq..
- Richer portfolio: trade in safe and risky assets
- Networth of intermediaries determine endogenous risk and money creation
- Feedback between money multiplier and financial sector
- $\bullet\,$ Extensions with long-term debt \to valuation effects
- Redistribution and insurance effects of monetary policy

- Impressive! Aggregate shocks, not just stationary eq..
- Richer portfolio: trade in safe and risky assets
- Networth of intermediaries determine endogenous risk and money creation
- Feedback between money multiplier and financial sector
- \bullet Extensions with long-term debt \rightarrow valuation effects
- Redistribution and insurance effects of monetary policy
- Methods: (Brunnermeir-Sannikov, 2014). Full eq. dynamics also in discrete time. Pros? Cons?

• Are intermediaries really exposed to deflation risk (TIPS, options, etc)?

• Are intermediaries really exposed to deflation risk (TIPS, options, etc)? If they are, why do they expose themselves to such risk?

• Are intermediaries really exposed to deflation risk (TIPS, options, etc)? If they are, why do they expose themselves to such risk? Or is it not a big risk in the first place? Good policy?

- Are intermediaries really exposed to deflation risk (TIPS, options, etc)? If they are, why do they expose themselves to such risk? Or is it not a big risk in the first place? Good policy?
- No deflation nor Fisherian debt-deflation in US crisis. Drop in money multiplier in US crisis was mainly due to increase in reserve holdings (Bianchi-Bigio, 2013)?

- Are intermediaries really exposed to deflation risk (TIPS, options, etc)? If they are, why do they expose themselves to such risk? Or is it not a big risk in the first place? Good policy?
- No deflation nor Fisherian debt-deflation in US crisis. Drop in money multiplier in US crisis was mainly due to increase in reserve holdings (Bianchi-Bigio, 2013)?
- Emerging markets: Alternative debt-deflation through foreign currency and movements in real exchange rate might be more relevant.

Monetary models often subject to indeterminacies (Sargent-Wallace 1975)

Monetary models often subject to indeterminacies (Sargent-Wallace 1975)

Take Bewley model with inside money (nominal bonds)

 $P_t c_t + q_t B_{t+1} = P_t y_t + B_t$

Monetary models often subject to indeterminacies (Sargent-Wallace 1975)

Take Bewley model with inside money (nominal bonds)

$$c_t + \hat{q}_t b_{t+1} = y_t + b_t$$

Let $\hat{q}_t = q_t \frac{P_{t+1}}{P_t}, \ b_t = B_t / P_t$

Monetary models often subject to indeterminacies (Sargent-Wallace 1975)

Take Bewley model with inside money (nominal bonds)

$$c_t + \hat{q}_t b_{t+1} = y_t + b_t$$

Let $\hat{q}_t = q_t \frac{P_{t+1}}{P_t}, b_t = B_t / P_t$ Market clearing $\int \hat{b}_{t+1}(b_t, y_t) \Gamma_t(b_t, y_t) = 0$

Monetary models often subject to indeterminacies (Sargent-Wallace 1975)

Take Bewley model with inside money (nominal bonds)

$$c_t + \hat{q}_t b_{t+1} = y_t + b_t$$

Let $\hat{q}_t = q_t \frac{P_{t+1}}{P_t}, b_t = B_t / P_t$ Market clearing $\int \hat{b}_{t+1}(b_t, y_t) \Gamma_t(b_t, y_t) = 0$

• Multiple paths of prices consistent with sequence of q_t^*

Monetary models often subject to indeterminacies (Sargent-Wallace 1975)

Take Bewley model with inside money (nominal bonds)

$$c_t + \hat{q}_t b_{t+1} = y_t + b_t$$

Let $\hat{q}_t = q_t \frac{P_{t+1}}{P_t}, b_t = B_t / P_t$ Market clearing $\int \hat{b}_{t+1}(b_t, y_t) \Gamma_t(b_t, y_t) = 0$

- Multiple paths of prices consistent with sequence of q_t^*
- But initial P_0 has redistributive effects $b_t = B_t/P_t \rightarrow \{q_t^*\}$
- Important difference in the paper seems to be outside money.
- Clarify determinacy of P_t —key for deflation spiral

Policy

- Liquidity spirals and deflation spirals cause "excessive borrowing"
- Would be interesting to study how the benefits from macroprudential policy vary when monetary policy is conducted optimally
 - Models of optimal macroprudential policy typically abstract from monetary policy (Lorenzoni, 2008; Bianchi, 2011; Bianchi-Mendoza 2013)
- Time inconsistency aspects of monetary and macropru?

Conclusions

- Very nice and interesting paper!
- Elegant model providing a unified framework for the study of price and financial stability
- Clarify price level determination
- Quantitative?

Conclusions

- Very nice and interesting paper!
- Elegant model providing a unified framework for the study of price and financial stability
- Clarify price level determination
- Quantitative?
- Optimal Policy? Macroprudential tools?