
Appendix: Solution Method

The Matlab code named “Model.m” provides the algorithm for solving the model. The code is

divided in six sections.

Section 1. Parameter Values sets the parameters values shown in table 1. We use 100 points in

the grid for bonds and three states for yT shocks, three states for news shocks and two states for

interest rates shocks. The convergence tolerance level for the solution of decision rules, as defined

in Section 3 below, is set to ε = 1e−5.

Section 2. Construction of Markov Chain discretizes yT shocks using Tauchen and Hussey’s

method. The time-series properties of the yT process that the method targets are estimates

obtained by Bianchi (2011)using data for Argentina, and the corresponding moments are reported

in table 1. We incorporate news shocks according to the formulae in the Section 2.3 of the paper.

Then we add global liquidity shocks to construct the entire transition matrix, assuming yT shocks

and global liquidity shocks are independent.

Section 3. Decentralized Equilibrium solves the decentralized equilibrium using the time-

iteration method. Intuitively, this algorithm solves the model by backward recursive-substitution

of the model’s optimality conditions written in recursive form. In particular, the algorithm solves

for the recursive functions cT (b, z),PN(b, z) and B(b, z) that satisfy these four conditions:

PN(b, z) =
1− ω
ω

(
cT (b, z)

yN

)1+η

(24)

uT (cT (b, z), yN) ≥ βR(z)Ez[uT (cT (B(b, z), z′), yN)] (25)

B(b, z) ≥ −κR(z)(PN(b, z)yN + yT (z)) (26)

cT (b, z) + q(z)B(b, z) = b+ yT (z) (27)

where z is a triple (yT , q, s) that includes the realizations of the exogenous shocks to yT , the news

signal s, and q (recall that q = 1
R

).

Start the algorithm at an initial point defined by setting K = 1 and define conjectures for the

equilibrium functions at this point, denoted cTK(b, z), pNK(b, z) and BK(b, z). Then proceed with

the following steps:

1. Set BK+1(b, z) = −κR(z)(PN
K (b, z)yN + yT (z)), and calculate cTK+1(b, z) using equation 27,

which yields cTK+1(b, z) = b+ yT (z)− (1/R(z))BK+1(b, z)

2. Compute

U ≡ uT (cTK+1(b, z), y
N)− βR(z)Ez

[
uT (cTK(BK(b, z), z′), yN)

]
(28)

3. If U > 0, the collateral constraint binds and then equation 24 implies that the equilibrium

31

price must be given by pNK+1(b, z) = 1−ω
ω

(
cTK+1(b,z)

yN

)1+η
4. If U ≤ 0, the collateral constraint does not bind. Discard the values of BK+1(b, z) and

CT
K+1(b, z) set in Step 1, and solve for cTK+1(b, z) as the recursive function that satisfies the

Euler equation 25 with equality using the fsolve root-finding routine. We then compute

PN
K+1(b, z) using again equation 24 and BK+1(b, z) using equation 27

5. The above steps will in general produce a new set of functions cTK+1(b, z), p
N
K+1(b, z) and

BK+1(b, z) that will differ from the conjectures cTK(b, z), pNK(b, z) and BK(b, z). We thus

check the convergence criterion sup |xK+1 − xK | ≤ ε for x = B, cT , pN . If the criterion

fails, the conjectures are replaced with the solutions cTK+1(b, z), p
N
K+1(b, z) and BK+1(b, z)

and the procedure returns to step 1 using these new conjectures. If the convergence crite-

rion sup |xK+1 − xK | ≤ ε holds, the recursive functions are a solution to the decentralized

competitive equilibrium in recursive form.

Section 4. Social Planner solves the social planer’s problem. The algorithm is also a time-

iteration code similar to that of decentralized equilibrium. The difference is that uT in equation

25 becomes

uSPT = uT + µSPψ (29)

where µSP ≥ 0, with strict inequality if the collateral constraint 26 binds, and ψ is the externality

term given by κ(η + 1)
(
1−ω
ω

) (
cT

yN

)η
.

Section 5. Welfare Calculation takes the optimal policy functions we derived from section 3

and 4 of the Matlab code, and iterates until convergence to get value functions of the private agent

and social planer. We then calculate the welfare gain as in Bianchi (2011).

Section 6. Optimal Tax calculates optimal macro-prudential tax according to equation 23, and

set tax rate to zero when the borrowing constraint binds.

The Matlab code named ”Simulation.m” simulate our model. The code is divided in three

sections.

Section 1. Simulation simulates our model for 201,000 periods. The first 1,000 periods are

discarded to eliminate initial condition dependence. The initial bond position is set as mid point

of the bond grid for both DE and SP economies.

Section 2. Event Analysis identifies sudden stop events, and find the surrounding three periods

before and after the event. Crisis is defined as current account goes beyond two standard deviation

and collateral constraint binds in the decentralized economy. The crisis moments are obtained by

taking average across all crisis episodes.

Section 3. Crisis Breakdown analyzes crises effects preceded by different news (see figure 5)

and by different liquidity regimes (see figure 6). The definition of the breakdowns can be found

in section 4.3.

32

The Matlab code ”figures.m” generates figures 2, 3, 4,5, 6, 8 and 9 presented in the paper, and

display table 2 in the command window.

33

