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1 Introduction

The well-known “disconnect” in international finance holds that foreign exchange
rates show little empirical relationship to the macro variables, such as interest rates
and output (Obstfeld and Rogoff, 2000). More recent work contends that the source
of the disconnect is in financial markets (Itskhoki and Mukhin, 2021a). Moreover,
there has long been evidence of time-varying expected excess returns in foreign
exchange markets, and furthermore, it appears that the US dollar is particularly
special, as dollar assets offer lower average returns relative to the rest of the major
currencies when measured on historical data (Gourinchas and Rey, 2007). To
account for the exchange rate disconnect and associated puzzles, the literature has
turned to models with currency excess returns as the potential “missing link.” The
source or sources of these excess returns, however, remain elusive.

In this paper, we develop a theory of exchange rate fluctuations arising from the
liquidity demand by financial institutions within an imperfect interbank market. We
build on two observations of the international monetary system. First, US dollars are
the dominant source of foreign currency funding. According to the BIS locational
banking statistics, in March 2021, the global banking and non-bank financial sector
had cross-border dollar liabilities of over $11 trillion. Second, there is an inherent
instability of dollar funding. As documented, for example, in Acharya, Afonso
and Kovner (2017), banks are occasionally subject to large funding uncertainty or
interbankmarket freezing, which can leave them “scrambling for dollars.” Narrative
discussions attribute fluctuations in the US dollar exchange rate to such vicissitudes
in the short-term international money markets. A contribution of our paper is to de-
velop a formal framework to articulate this channel. We further provide quantitative
analysis that estimates series for global dollar funding levels and uncertainty shocks.
We provide evidence of a positive and significant statistical relationship between
bank liquid dollar holdings and exchange-rate fluctuations and use our model to
interpret that feature as evidence of the importance of dollar funding uncertainty
shocks.

In our framework, financial institutions—hereafter referred to simply as “banks”—
manage assets and liabilities in two currencies. Banks face the risk of sudden out-
flows of liabilities. If a bank ends up short of liquid assets to settle those flows, it
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needs to find a counterparty that provides the liquidity. However, there are times
when banks may lose confidence in each other and, as a result, face tighter frictions
in the interbank market. As insurance against these outflows, banks maintain a
buffer of liquid assets, especially dollar liquid assets, in line with the aforementioned
observations on the international financial system. As funding risk and interbank
market frictions fluctuate over time, they alter the relative demand for currencies,
resulting in movements in the exchange rate.

The theory uncovers how frictions in the settlement of international deposit
flows emerge as a dollar liquidity premium. This dollar liquidity premium gener-
ates a time-varying wedge in the interest parity condition, or “convenience yield,”
which plays a pivotal role in the determination of the exchange rate. Critically, the
convenience yield is endogenous and depends on the quantity of outside money
(liquid assets) and policy rates, the matching frictions in the interbank market, and
the volatility of deposit flows in different currencies. Through this endogenous
convenience yield, we link nominal exchange rates and the dollar liquidity premium
to the reserve position of banks in different currencies, funding risk, and confidence
in the interbank market.

On the surface, the model resembles the seminal monetary exchange rate model
of Lucas (1982). In that model, the two currencies earn a liquidity premium over
bonds because the goods in each country must be bought with the local currency. A
money demand equation determines the price levels in both currencies, and relative
prices determine the exchange rate. Our model shares Lucas’s segmentation of
transactions and exchange rate determination. However, in our model, the demand
for reserves in either currency stems from the precautionary demand by banks. This
implies different predictions of how the exchange rate reacts to aggregate shocks
and policy.

In particular, we show how the model can rationalize why the dollar tends to ap-
preciate in times of high volatility—a phenomenon that remains elusive for existing
open-economy models. Models of excess currency returns based on risk premia can
account for the excess dollar returns by positing that the dollar appreciates during
global downturns. However, they do not explain why the dollar appreciates during
global downturns in the first place. Models of financially constrained intermediaries
provide an alternative channel for excess dollar returns. Yet, these models predict
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that the US dollar should depreciate in a downturn, as the United States withstands
a larger share of losses in a global economic downturn. 1

In terms of policy, we find that changes in policy rates induce an attenuation
effect on exchange rates. To understand why, consider an initial situation where the
two currencies have the same interest rate and the exchange rate is expected to be
constant. Suppose that the dollar interest rate goes up. Given exchange rates, banks
have incentives to shift their portfolio towards dollar. As banks become relatively
more satiated with dollars, the convenience yield falls. No arbitrage then requires
that the dollar appreciates but less than it would in the absence of the endogenous
convenience yield.

We provide empirical evidence that supports the theoretical link between the
balance sheet of the banking sector and the US dollar exchange rate. According to
the theory, the financial sector increases its demand for liquid dollar assets relative
to dollar funding—US government obligations, including Treasuries and reserves
held at the Federal Reserve—when funding becomes more uncertain, and this, in
turn, translates into an appreciation of the dollar. In particular, the theory provides
a tight prediction for the results of a regression of the exchange rate on banks’
liquidity ratio as a function of the underlying shocks. As a validation exercise,
we conduct an equivalent regression with data for the G10 currencies and with
simulated data from the model. We find that the relationship in the data aligns
remarkably well with the model. Moreover, the findings are robust to multiple
specifications, including controlling for VIX —- a variable that captures a broad
measure of uncertainty and has been shown to have significant explanatory power for
exchange rates (Brunnermeier, Nagel and Pedersen, 2008; Lilley, Maggiori, Neiman
and Schreger, 2019)—and using an instrumental variable approach.

We calibrate and estimate our model, disciplining the parameters with banks’
balance sheet data and observed exchange rate fluctuations and covered interest
parity (CIP) deviations. Our counterfactual analysis shows that over the last 20
years, liquidity factors accounted for more than 1/3 of the variations in the euro-
dollar exchange rate and more than 90% of the deviations from covered interest
parity.

1Maggiori (2017) shows that if the US has a larger capacity to withstand risk in a global downturn,
US households bear a larger share of losses relative to the rest of the world in a global downturn.
With home bias, this means that the dollar must experience a real depreciation in a global downturn.
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Literature Review. Our paper contributes to the literature on exchange rates. Em-
pirically, numerous studies have highlighted various failures of the canonical in-
ternational macro model built on uncovered interest parity. Most notably, these
shortcomings include the disconnect that exists in the data between exchange rates
and macroeconomic fundamentals (“exchange rate disconnect”), and the inconsis-
tency between differences in nominal rates and expected exchange rate movements
(”forward premium puzzle”).2

On the theoretical front, a voluminous literature has aimed to address the afore-
mentioned puzzles. Broadly speaking, one can group this literature among three
different strands. A first strand of the literature has introduced exogenous conve-
nience yields, for example, by introducing bonds in the utility function. Examples
following this route include Engel (2016), Valchev (2020), Jiang, Krishnamurthy
and Lustig (2020), and Kekre and Lenel (2021). While this approach has proven
useful to account for exchange rate fluctuations, it leaves unexplained the source of
the convenience yield that causes the fluctuations in exchange rates.

A second strand of the literature has focused on risk premia as a key driver of
deviations from uncovered interest parity. This includes work on disaster risk (Farhi
and Gabaix, 2016), consumption habits (Verdelhan, 2010), or long-run risk (Bansal
and Shaliastovich, 2013; Colacito and Croce, 2011; Colacito, Croce, Ho and Howard,
2018). As in the closed-economy equity-premium puzzle literature, departing from
standard preferences for consumption allows the model to generate substantial risk
premia and can help address some of the shortcomings of the canonical international
macro model.

A third strand of the literature has turned to models with segmented markets
and frictions on financial intermediaries, which give rise to limits to international
arbitrage. One approach in this literature focuses on balance sheet constraints on
intermediaries. For example, Gabaix and Maggiori (2015) considers a two-country
model where households can only take positions in local currency and trade with
global financial intermediaries that can take positions in both currencies. Because
the intermediary is subject to a leverage constraint, UIP fails to hold and financial

2See Meese and Rogoff (1983); Fama (1984); Obstfeld and Rogoff (2003). An active literature
revisiting these puzzles and other important features of exchange rates includes Hassan and Mano
(2019); Kalemli-Özcan (2019); Kalemli-Özcan and Varela (2021); Brunnermeier et al. (2008); Lilley
et al. (2019). See Engel (1996, 2014) for surveys of the literature.
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shocks, driven by exogenous changes in noise traders’ position, affect exchange
rates.3 A second approach in this literature considers risk-averse intermediaries. In
Itskhoki and Mukhin (2021a), households in the two countries trade in the local
currency bond and foreign intermediaries are subject to limited hedging opportuni-
ties and therefore require compensation to take a currency mismatch. Following
this literature, Gourinchas, Ray and Vayanos (2021), and Greenwood, Hanson,
Stein and Sunderam (2020) introduce maturity in models with downward sloping
demands and examine the implications for yield curves and Koijen and Yogo (2020)–
with a more empirical approach—build a demand system to estimate elasticities of
exchange rates to capital flows.

Our paper offers an alternative source for deviations of uncovered interest parity.
While our theory is in many ways complementary to those based on risk premia or
financial constraints on intermediaries, we argue that it offers signature predictions
for exchange rates. As previously mentioned, a key challenge faced by these theories
is explaining the safe heaven nature of the US dollar—often referred to as the
“reserve currency paradox” (Maggiori, 2017). From the risk-premium channel
perspective, the dollar earns a lower expected return because it is perceived to
appreciate during a global crisis. However, why the dollar appreciates is for the
most part, left unexplained.4 Moreover, a challenge for this literature is that if
exchange rates were indeed primarily driven by risk considerations, an increased
demand for dollars due to insurance motives (and an appreciation) should not
occur during a global crisis, as the adverse shock has already materialized.5 From
the perspective of intermediary asset pricing models, if the US is endowed with
a greater capacity to absorb losses during a global economic downturn, its real
exchange rate should depreciate because consumption falls more sharply in the US
compared to the rest of the world. Our model provides a natural explanation for

3See also Amador, Bianchi, Bocola and Perri (2020); Fanelli and Straub (2020) for other examples
and Maggiori (2021) for a review of this literature. An early paper that considers segmentation
in domestic markets is Alvarez, Atkeson and Kehoe (2009). Bacchetta and Van Wincoop (2010)
considers constraints on portfolio choices to understand the forward discount puzzle.

4In Farhi and Gabaix (2016), the dollar experiences a real appreciation when the risk of a disaster
goes up because the disaster is assumed to affect disproportionally the non-tradable sector of the US
economy.

5Motivated by the “reserve currency paradox”, Kekre and Lenel (2021) develops a rich two-
country model with nominal rigidities, exogenous convenience yields, and Epstein-Zin preferences.
In their model, however, the flight to safety is modeled exogenously as an increase in the preference
for foreign currency bonds.
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the US dollar’s safe haven status. In times of heightened uncertainty, the liquidity
properties of the US dollar become increasingly valuable, causing banks to scramble
for dollars and leading to an appreciation of the dollar.

Our paper also relates to an emerging literature on interbank market frictions
and monetary policy (see e.g. Bianchi and Bigio, 2021; De Fiore, Hoerova and Uhlig,
2018; Piazzesi and Schneider, 2021; and Weill, 2020 for a review) To the best of our
knowledge, our paper provides the first attempt at incorporating these frictions in
an open economy framework. Our model builds more closely on Bianchi and Bigio
(2021), which we generalize by allowing for multiple currencies and aggregate risk.

Outline. The paper is organized as follows.Sections 2 and 3 present the model
and theoretical analysis. Section 4 presents the quantitative and empirical analysis.
Section 5 concludes. All proofs are in the Appendix.

2 A Model of Banking Liquidity and Exchange Rates

We present a dynamic equilibrium model of global banks that intermediate interna-
tional financial flows and are subject to idiosyncratic liquidity shocks. The model
has two economies, the EU and the US, with corresponding currencies and central
banks. We label the euro as the domestic currency and the dollar as the foreign
currency. There is a representative global household and a single final tradable
good produced by a continuum of international multinational firms.

2.1 Environment

Timing. Time is discrete and has an infinite horizon. Every period is divided into
two sub-stages: a lending stage and a balancing stage. In the lending stage, banks
make their equity payout, Divt, and portfolio decisions. In the balancing stage,
banks face liquidity shocks and re-balance portfolios.

Notation. Weuse an asterisk to denote the foreign currency (i.e., the dollar) variable.
The exchange rate is defined as the amount of euros necessary to purchase one
dollar—hence, a higher e indicates an appreciation of the dollar. We index the vector
of aggregate shocks by X and use it to denote an interest rate paid in period t (and
determined in period t− 1).
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Preferences and budget constraint. Banks’ payouts are distributed to households
that own banks’ shares and have linear utility with discount factor β. A bank’s
objective is to maximize shareholders’ value, and therefore it maximizes the net
present value of dividends:

E0

∞∑
t=0

βt ·Divt. (1)

Banks enter the lending stage with a portfolio of assets and liabilities. The
portfolio includes liquid assets in euros and dollars, mt and m∗

t , and loans bt, which
are denominated in consumption goods and pay a real return Rb

t . We will refer to
liquid assets as “reserves” for simplicity, but this term should be understood as also
encompassing government bonds—the critical property, as we will see, is that these
are assets that can be used as settlement instruments.6

On the liability side, banks obtain funding via demand deposits, dt and d∗t ,
discount window loans, wt and w∗

t , and net interbank loans, ft and f ∗
t (which are

negative if the bank has lent funds). Deposit and interbank market loans have
market returns given by idt and ift , while central banks set the corridor rates for
reserves and the discount window, which are imt and iwt , respectively.

The bank’s budget constraint, expressed in dollars, is given by

P ∗
t Divt+

mt+1 − dt+1

et
+ bt+1P

∗
t +m∗

t+1− d∗t+1 ≤ P ∗
t btR

b
t +m∗

t (1+ im
∗

t )− d∗t (1+ id,∗t )

− f ∗
t (1 + if,∗t )− w∗

t (1 + iw,∗
t ) +

mt(1 + imt )− dt(1 + idt )− ft(1 + ift )− wt(1 + iwt )

et
.

(2)

At the beginning of each period, a bank pays the interest on its liabilities, collects
the interest on its assets, issues new liabilities, and buys new assets.

Withdrawal shocks. In the balancing stage, banks are subject to randomwithdrawal
of deposits in both currencies. As in Bianchi and Bigio (2021), withdrawals have

6That is, our analysis is not about the management of scarce reserves per se but more broadly
about liquidity management. As it is often discussed, banks have had abundant excess reserves for
the most part since the 2008 financial crisis—see however, the work by Copeland, Duffie and Yang
(2021) showing that reserves at various points in the post-crisis period were not so ample owing to
the series of new liquidity regulations. In any case, liquidity concerns have remained a first-order
concern for financial institutions, as evidenced by observed measures of liquidity premia as well, as
the Senior Financial Officer Survey.
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zero mean—hence, deposits are reshuffled but preserved within the banking system.
We allow for time-varying volatility of these shocks, which, as we will see, play an
essential role in driving exchange rate fluctuation. We denote by ω the withdrawal
shock and use ϕt andΦt to denote the density and CDF.When ω > 0, a bank receives
an inflow of deposits; when ω < 0, a bank faces an outflow.

The inflow and outflow of deposits across banks generate a transfer of liabilities
across banks. We assume that these transfers are settled using reserves of the
corresponding currency. Importantly, reserves for individual banks must remain
positive at the end of the period. We denote by sjt the euro reserve balances of a
bank when faced with a withdrawal shock ωj

t on its euro deposits. This balance is
given by

sjt = mt+1 + ωj
tdt+1.

Higher liquidity holdingsmt+1 make the bank more likely to end with a surplus.7

In particular, if a bank faces a withdrawal shock ω < −mt+1/dt+1, it will end with a
deficit reserve balance. Otherwise, the bank has a surplus. Similarly, for dollars, we
have that

sj,∗t = m∗
t+1 + ωj,∗

t d∗t+1.

Interbank market. After withdrawal shocks are realized, there is a distribution of
bank surplus and bank deficit balances in both currencies. We assume there is an
interbank market for each currency, in which banks with a deficit balance in one
currency borrow from those with a surplus balance. These two interbank markets
behave symmetrically, so it suffices to show only how one of them works.8

Wemodel the interbank market as an over-the-counter (OTC) market. Modeling
the interbank market using search and matching is natural, considering that the
interbank market is a credit market in which banks on different sides of the market—
surplus and deficit—must find a counterparty they trust (see, Ashcraft and Duffie,
2007 and Afonso and Lagos, 2015). Our specific formulation follows Bianchi and

7We omit the superscript j from bank portfolio choices because it is without loss of generality
that all banks make the same choices in the lending stage.

8We assume a stark form of segmented interbank markets: dollar surpluses cannot be used to
patch euro deficits and vice versa. This assumption can be relaxed to some extent. Still, some form of
asset market segmentation is necessary to obtain liquidity premia and rule out Kareken and Wallace
(1981)’s exchange rate indeterminacy. Section 3.4 discusses an extension of the baseline model along
these lines.
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Bigio (2017; 2021) which, in turn, integrates elements from Atkeson, Eisfeldt and
Weill (2015) and Afonso and Lagos (2015).

As a result of the matching frictions, only a fraction of an individual bank’s
surplus or deficit is transacted in the interbank market. A bank with surplus sj

is able to lend a fraction Ψ+
t to other banks while the remaining surplus is kept

in reserves. Conversely, a bank that has a deficit can only secure a fraction Ψ−
t .

The remainder of the deficit is borrowed at the penalty rate iwt . The penalty rate
can be interpreted as the discount window rate or an overdraft rate charged by
correspondent banks with access to the Fed’s discount window.

The fractions of balanced matched Ψ+
t and Ψ−

t are endogenous objects that
depend on the aggregate reserve deficit balances relative to surplus balances. As-
suming a constant return to scale matching function, the probabilities are only a
function of market tightness, which is defined as

θt ≡ S−
t /S

+
t ,

where S+
t ≡

´ 1
0
max

{
sjt , 0

}
dj and S−

t ≡ −
´ 1
0
min

{
sjt , 0

}
dj denote the aggregate

surplus and deficit, respectively. Notice that becausem ≥ 0 and E(ω) = 0,we have
that in equilibrium, θ ≤ 1. That is, there is a relatively larger mass of banks in
surplus than in deficit.

The interbankmarket rate is the outcome of a bargaining problem between banks
in deficit and those in surplus. There are multiple trading rounds in which banks
tradewith each other. If banks are not able tomatch by the end of the trading rounds,
they deposit the surplus of reserves at the central bank or borrow from the discount
window. Throughout the trading, the terms of trade at which banks borrow and
lend— the interbank market rate— depends on the probability of finding a match
in the future rounds.9 Notice that we used if in the budget constraint (2) to denote
the average interbank market rate at which banks trade. Ultimately, we can define a
liquidity yield function χ that captures the benefit of having a real surplus s̃ (or the

9Multiple trading rounds imply that interbankmarket rates varywith the tightness of the interbank
market. With a single trading round, the interbank market rate would be a constant that depends on
policy rates but not on the interbank-market tightness.
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Portfolio
Choices

(m, d, b,m∗, d∗)

ω

Shock

FX open FX close

Interbank
Markets

(Rw,Ψ+,Ψ−)

Settlements Average
Market Payouts

(χ+, χ−)

Figure 1: Timeline

cost of having a real deficit) upon facing the withdrawal shock as follows:

χ(θ, s̃;X,X ′) =

χ+(θ;X,X ′)s̃ if s̃ ≥ 0,

χ−(θ;X,X ′)s̃ if s̃ < 0
(3)

where χ+ and χ−are given by

χ+(θ;X,X ′) = Ψ+(θ)[Rf (X,X ′)−Rm(X,X ′)]. (4)

χ−(θ;X,X ′) = Ψ−(θ)[Rw(X,X ′)−Rf (X,X ′)] + (1−Ψ−(θ))[Rw(X,X ′)−Rm(X,X ′)],

(5)

In these expressions, Ry(X,X ′) denotes the expected real rate of return on an asset
or liability y when the initial state is X and the next period state is X ′. Note that the
expected return depends on X ′ because the nominal rate is pre-determined, but the
realized real return depends on the realized inflation rate. In particular, we have
that Ry(X,X ′) ≡ (1 + iy(X))/(1 + π(X,X ′)), where π(X,X ′) ≡ P (X ′)/P (X) − 1

denotes the inflation rate. When it does not lead to confusion, we streamline the
argument (X,X ′) in these expressions. We will also use ‘bars’ to denote expected
returns. That is, R̄y ≡ E [Ry(X,X ′)|X] and χ̄ = E [χ(θ, s̃;X,X ′)|X].

Equation (4) reflects that the benefit of lending in the interbank market in the
case of surplus is Rf −Rm. By the same token, (5) reflects that borrowing from the
interbank market and the discount window costs respectivelyRf −Rm andRw−Rm.

Figure 1 presents a sketch of the timeline of decisions within each period. We
next describe the bank optimization problem.
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2.2 Banks’ problem

The objective of a bank is to choose dividends and portfolios to maximize (1) subject
to the budget constraint and the settlement frictions. Crucially, when choosing the
portfolio, banks anticipate how withdrawal shocks may lead to a surplus or deficit
of reserves and the associated costs and benefits of ending with these positions.
We express the bank’s optimization problem in terms of real portfolio holdings
{b̃, m̃∗, d̃∗, d̃, m̃} and real returns. Thus, we define x̃t ≡ xt/Pt−1. The individual state
variable is net worth, n, defined as the value of real assets minus liabilities at the
beginning of the period. Recursively, the bank problem is

v (n,X) = max
{Div,b̃,m̃∗,d̃∗,d̃,m̃}

Div + βE [v (n′, X ′)] (6)

subject to the budget constraint

Div+b̃+ m̃∗ + m̃ = n+ d̃+ d̃∗, (7)

and the evolution of bank net worth

n′ = Rb(X)b̃+Rm(X,X ′)m̃+Rm∗
(X,X ′)m̃∗ −Rd(X,X ′)d̃−Rd,∗(X,X ′)d̃∗︸ ︷︷ ︸
Portfolio Returns

+ χ∗(θ∗(X), m̃∗ + ω∗d̃∗;X,X ′) + χ(θ(X), m̃+ ωd̃;X,X ′)︸ ︷︷ ︸
Settlement Costs

. (8)

The evolution of n depends on the realized return on assets, but also on the realized
settlement costs.10 Because of the linearity of bank payoffs and the objective function,
the value function is linear in net worth. Anticipating that in general equilibrium,
there is a finite demand for loans and deposits, we note that an equilibrium therefore
requires that Rb (X) = 1/β ≥ Rm (X,X ′) .11 The next lemma is an intermediate step
towards the solution of the bank under this condition.

10To obtain (8), we use the definition of χ as expressed in (3)-(5) and the real returns. Implicit in
the law of motion is that when a bank borrows at the discount window or from other banks, it pays
a high-interest rate but obtains the interest on reserves.

11If the return on loans were lower than 1/β, banks would not invest in loans. Conversely, if the
return on loans (or reserves) was higher than 1/β, banks would inject infinite equity in the bank
and the bank value would be infinite.
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Lemma 1. The solution to (6) is v (n,X) = n, and the optimal portfolio {m̃, d̃, m̃∗, d̃∗}
solves

Π(X) = max
{m̃,d̃,m̃∗,d̃∗}

E
{ [

Rb(X)−Rd(X,X ′)
]
d̃−

[
Rb(X)−Rm(X,X ′)

]
m̃[

Rb(X)−Rd,∗(X,X ′)
]
d̃∗ −

[
Rb(X)−R∗,m(X,X ′)

]
m̃∗[

χ(θ(X), m̃+ ωd̃;X,X ′)
]
+
[
χ∗(θ∗(X), m̃∗ + ω∗d̃∗;X,X ′)

]]}
. (9)

The first two lines in (9) represent the direct portfolio payoffs and the third
line constitutes the expected liquidity costs/benefits emerging from the settlement
frictions. Notice that idiosyncratic shocks are only relevant for the latter term.

The bank portfolio problem is homogeneous of degree one. Thus, it must be that
in general equilibrium, expected real returns are such that Π(X) = 0. This means
that the scale of the individual bank portfolio is indeterminate at the individual
bank level (although the aggregate one will be determined in equilibrium). On
the other hand, the liquidity ratio is determined at the individual bank level. In
effect, the kink in the liquidity cost function creates risk-averse behavior in the bank
objective, pinning down the banks’ ratios.

2.3 Non-financial sector

This section describes the non-financial block. This block comprises households that
supply labor and save in deposits in both currencies. Some goodsmust be purchased
onlywith dollar deposits and somewith euro deposits. Firms aremultinationals that
use labor to produce the final good and are subject to working capital constraints,
giving rise to a demand for loans. Goods trade is costless and, as a result, the
law of one price holds. To further enhance tractability, we work with quasilinear
preferences for households. As we show in Appendix C we obtain the following
schedules for the real aggregate loan demand by firms, Bd

t , and real aggregate
deposit supply for deposits in euros and dollars, Ds

t and D∗,s
t :

Bd
t =Θb

t

(
Rb

t+1

)ϵb
, ϵb < 0, Θb

t > 0, (10)

Ds
t+1 =Θd

t

(
R̄d

t+1

)ϵd
, ϵd > 0, Θd

t > 0, (11)
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D∗,s
t+1 =Θd,∗

t

(
R̄d,∗

t+1

)ϵd∗
, ϵd

∗
> 0, Θd,∗

t > 0, (12)

where ϵb is the semi-elasticity of credit demand and
{
ϵd, ϵd

∗} are the semi-elasticities
of the deposit supplies with respect to the real returns, while the Θ terms are scale
coefficients. These parameters are linked to the production structure and preference
parameters in the microfoundation.

2.4 Central Banks.

The two central banks choose the nominal rates for reserves, imt , and the discount
window, iwt , as well as the nominal supply of reserves

{
Mt+1,M

∗
t+1

}
and nominal

discount window loansWt. To balance the payments on reserves and the revenues
from discount window loans, we assume that central banks passively adjust lump-
sum taxes (or transfers). Because households have linear utility in the consumption
good, these lump-sum taxes have no implications. We have the following budget
constraint for the domestic central bank:

Mt+1 + Tt −Wt+1 = Mt(1 + imt )−Wt(1 + iwt ). (13)

An identical budget constraint holds for the foreign central bank.

We only consider one type of government liability: we do not distinguish be-
tween government bonds and central bank reserves. However, our analysis can be
immediately extended to allow for a distinction between reserves and government
bonds, following Bianchi and Bigio (2021).

2.5 Competitive Equilibrium

We study recursive competitive equilibria in which all variables are indexed by the
vector of aggregate shocks, X . We consider shocks to the nominal interest rates
on reserves, the deposit supply, and the volatility of withdrawals. Without loss of
generality, we restrict to a symmetric equilibrium, in which all banks choose the
same portfolios.

Definition 1. Given central bankpolicies for both countries {M(X), im(X), iw(X),W (X)},
{M∗(X), im

∗
(X), iw,∗(X),W ∗(X)}, a recursive competitive equilibrium is a pair of
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price level functions {P (X), P ∗(X)}, exchange rates e(X), real returns for loans
Rb(X), nominal returns for deposits {id(X), id,∗(X)}, an interbankmarket rate if (X),
market tightness θ(X), bank portfolios {d̃(X), d̃∗(X), m̃(X), m̃∗(X), b̃(X)}, interbank
and discount window loans {f(X), f ∗(X), w(X), w∗(X)}, and aggregate quantities
of loans {B(X)} and deposits {D(X), D∗(X)} such that

(i) Banks choose portfolios {d̃(X), d̃∗(X), m̃(X), m̃∗(X), b̃(X)} to maximize ex-
pected profits, as stated in (9).

(ii) Households are on their deposit supply, and firms are on their loan demand.
That is, equations (10)-(11) are satisfied given real returns and quantities
{B(X), D(X), D∗(X)}.

(iii) The law of one price holds P (X) = P ∗(X)e(X).

(iv) Markets clear for deposits d̃(X) = Ds(X) and d̃∗(X) = Ds,∗(X); reserves
m̃ (X)P (X) = M(X) and m̃∗(X)P ∗(X) = M∗(X); loans b̃(X) = B(X); and
the interbank marketsΨ+(X)S+ = Ψ−(X)S− andΨ+,∗(X)S+,∗ = Ψ−,∗(X)S−,∗.

(v) For both currencies, market tightness θ(X) is consistent with the portfolios and
the distribution ofwithdrawals, while thematching probabilities {Ψ+(X),Ψ−(X)}
and interbank market rates if (X) are consistent with market tightness θ(X).

2.6 Discussion on interbank markets

A central ingredient of our framework is that financial institutions are subject to
liquidity mismatch and when they are short of liquidity they trade in an OTC
interbank market. Moreover, we assume that the dollar and euro interbank markets
are segmented. While our model can capture various assumptions regarding the
differences in the two markets, we will focus on a situation where funding risk is
higher in the dollar market. This assumption is in line with the observation that the
dollar serves as the leading funding currency, especially for short-term cross-border
bank loans. As Ivashina, Scharfstein and Stein (2015) note. “[European] banks
rely on wholesale dollar funding while raising more of their euro funding through
insured retail deposits” (p. 1241), implying that dollar funding is more volatile and
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more unstable. Moreover, as the 2020 BIS working group report (Davies and Kent,
2020, p. 29) puts it,

US dollar funding is channeled through the global financial system,
involving entities across multiple sectors and jurisdictions. Participants
in these markets face financial risks typically associated with liquidity,
maturity, currency, and credit transformation. What makes global US
dollar funding markets special is the broad participation of non-US
entities worldwide. These participants are often active in US dollar
funding markets without access to a stable US dollar funding base or
to standing central bank facilities that can supply US dollars during
episodes of market stress.

McGuire and Von Peter (2009) and IMF (2019) provide evidence and discussion of
the dominance of the dollar for short-term funding in the world banking system
and its attendant volatility. Bohorquez (2023) reports that 70 percent of all liabilities
at non-U.S. BIS reporting banks are less-volatile demand deposits, while only 30
percent of dollar funding takes this shape.

3 Theoretical Characterization

3.1 Liquidity Premia and Exchange Rates

We first describe exchange rate determination. We combine both reserve-market
clearing conditions, the law of one price, and deposit clearing conditions to arrive
at a condition for the determination of the nominal exchange rate:

e(X) =
P (X)

P ∗(X)
=

M(X)/m̃(X)

M∗(X)/m̃∗(X)
. (14)

Condition (14) is a Lucas-style exchange rate determination equation, but rather
than following from cash-in-advance constraints, it is derived from banks’ liquidity
management decisions. Given a real demand for reserves in euros and dollars that
emerges from the bank portfolio problem (9), the dollar will be stronger (i.e., higher
e) the larger is the nominal supply of euro reserves relative to that of dollar reserves.
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Similarly, for given nominal supplies of euro and dollar reserves, the dollar will
be stronger as the relative demand for real dollar reserves increase. The novelty
relative to the canonical Lucas-style model is that liquidity factors play a role in the
real demand for currencies and, therefore, affect the value of the exchange rate. We
now turn to analyzing the determinants of the real demand for reserves in each
currency.

To understand how liquidity factors affect the exchange rate through the demand
for reserve balances, let us inspect the portfolio problem (9). We denote by µ = m̃/d̃

the banks’ liquidity ratio and note that sj < 0 if and only if ωj < −µ. Using the
expression for the liquidity yield function (3), and recalling that ‘bars’ denote
expected returns, we can express the first-order condition with respect to m̃ as

Rb − R̄m = (1− Φ(−µ))χ̄+(θ) + Φ(−µ)χ̄−(θ). (15)

At the optimum, banks equate the expected real marginal return on loans, Rb, with
the expected real marginal return on reserves. The latter is given by the expected
real interest on reserves R̄m plus their marginal liquidity value. If the bank ends
up in surplus, which occurs with probability 1− Φ(−µ), the expected real marginal
value is χ̄+. If the bank ends up in deficit, which occurs with probability Φ(−m̃/d̃),
the expected real marginal value is χ̄−. We label the difference in yields as the bond
premium, BP ≡ Rb − R̄m and similarly BP∗ ≡ Rb − R̄m∗ .

We have an analogous condition form∗:

Rb − R̄m∗
= (1− Φ∗(−µ∗))χ̄+,∗(θ∗) + Φ∗(−µ∗)χ̄−,∗(θ∗). (16)

Combining (15) and (16) and using the law of one price 1 + π = E [(1 + π∗)e′/e],
we obtain a liquidity premium adjusted interest parity condition. In particular, denoting
the total derivative of χ̄with respect tom (i.e., the right-hand side of eq. (15)) by
χ̄m (s; θ), we have that

Et

{
1

1 + πt+1

[
1 + imt − (1 + im

∗

t ) · et+1

et

]}
= E [χ̄m∗ (s∗; θ∗)− χ̄m (s; θ)]︸ ︷︷ ︸

DLP

. (17)

This equation establishes that the difference in the real return on reserves in the two
currencies is equal to the difference in the marginal liquidity values. We refer to the
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difference in marginal liquidity values as the dollar liquidity premium, which we
denote by DLP .

In the absence of a liquidity premium, (17) would reduce to a canonical UIP that
equates to a first order, the difference in nominal returns to the expected depreciation.
However, whenever the marginal liquidity value of a dollar is larger than that of a
euro (i.e., when DLP > 0), a lower nominal interest rate in dollars than in euros
is consistent with equilibrium, even if the exchange rate is expected to be constant.
Note that because banks are risk neutral, there is no risk premium, and the deviation
from UIP emerges entirely through liquidity.

Finally, we have the first-order conditions with respect to deposits in both cur-
rencies:

Rd = R̄m + Eω [χ̄m (s; θ) + χ̄d (s; θ)] ; R̄d,∗ = R̄m∗
+ Eω∗ [χ̄m∗ (s∗; θ∗) + χ̄d∗ (s

∗; θ∗)] .

(18)

where χ̄d denotes the partial derivative of χ̄ with respect to d, the product of the
derivate of the average settlement costs with respect to the average position s times
the derivative of s with d—not the total derivative that would include the effect on
θ. Like (17), these conditions imply that the expected real return on dollar and euro
deposits may not be equated. In particular, a higher marginal liquidity cost of dollar
deposits will be a force towards a lower real return of dollar deposits.

3.2 Funding Shocks

We now examine how funding shocks alter the exchange rate and liquidity premia.
For analytical tractability, we assume that the supply of deposits is perfectly inelastic
in both currencies. This assumption sharpens the results but does not alter the
essence of the mechanism, as we will then show numerically.

We focus on shocks to dollar funding. The same shocks to the euro will have
opposite effects on the exchange rate. Notice that because Rb = 1/β is in equilib-
rium, the fact that deposit supplies are inelastic implies that shocks to the dollar
funding will not affect BP . Thus, DLP will move one to one with BP∗, a result
that speaks directly to the empirical literature connecting the liquidity premium of
dollar-denominated assets to the exchange rate (Liao, 2020; Jiang, Krishnamurthy

17



and Lustig, 2021; Engel and Wu, 2023).

A key object to characterize the effects of various shocks is the derivative ofDLP
with respect to the dollar liquidity ratio µ∗:

DLPµ∗ =
[
(1− Φ∗(−µ∗)) · χ̄+∗

θ∗ + Φ∗(−µ∗) · χ̄−∗

θ∗

]︸ ︷︷ ︸
effect on average interbank rates

·∂θ
∗

∂µ∗ − ϕ∗(−µ∗) ·
(
χ̄−∗ − χ̄+∗)︸ ︷︷ ︸

liquidity risk exposure

< 0.

This expression illustrates how a change in the dollar liquidity ratio must impact the
dollar liquidity premium in equilibrium. There are two key terms. First, a higher
liquidity ratio reduces the interbank-market tightness θ, thus easing the settlement
frictions and reducing the average interbank rates. This general equilibrium effect
reduces the liquidity premium. Second, a higher liquidity ratio reduces the proba-
bility that an individual bank ends up with a deficit. This partial equilibrium effect
also reduces the liquidity premium because the cost of deficits is higher than the
benefit of surpluses.

With this expression in hand, we can characterize the effects of different shocks.

Supply of dollar funding. The first question we explore is what are the effects of
an increase in the supply of dollar funding?

Proposition 1 (Funding level shock). Consider an increase in the real supply for dollar
deposits Θd,∗. We have the following:

1) If the shock is i.i.d, then the shock appreciates the dollar, reduces the dollar liquidity ratio
µ∗, and raises DLP . In particular,

d log e

d logD∗ = − DLPµ∗

Rb −DLPµ∗µ∗ ∈ (0, 1) ,
d log µ∗

d logD∗ = − Rb

Rb −DLPµ∗µ∗ ∈ (−1, 0) ,

and dDLP = R̄m∗
d log e > 0.

If the shock is permanent, then the shock appreciates the dollar one for one, and does not
change the liquidity ratio µ∗ nor DLP :

d log e∗

d logD∗ = −d logP ∗

d logD∗ = 1, and dµ∗ = dDLP = 0.

Proposition 1 establishes that a higher supply of dollar deposits appreciates the
dollar regardless of whether the shock is temporary or permanent. The logic is
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simple: a higher amount of real dollar deposits increases the demand for real dollar
reserves. As banks have more dollar liabilities, there is a higher marginal value from
dollar reserves. Given a fixed nominal supply of reserves, the increase in demand
leads to an appreciation of the dollar.

At the same time, the increase in the supply of dollar deposits has different
implications for liquidity premia, depending on whether the shock is temporary or
permanent. When the shock is temporary, the exchange rate is expected to revert to
a lower initial value in the following period. Given nominal rates, this reduces the
expected real return of holding dollar reserves, and the demand for dollar reserves
falls for an individual bank. In equilibrium, dollar reserves must have a higher
marginal liquidity value, and there is a rise in DLP . Overall, we then have that
in response to a temporary increase in the supply of dollar deposits, the dollar
appreciates, the dollar liquidity ratio falls, and DLP increases.

When the shock is permanent, the effect on the exchange rate is also expected
to be permanent. In the absence of any expected depreciation effects, DLP must
remain constant. Thus, in equilibrium, the outcome is that banks increase their
holdings of dollar reserves in real terms in proportion to the increase in the supply
of deposits. Since the supply ofM∗ is fixed, the amount of goods that can be bought
with one dollar must increase, and this appreciates the dollar.12

Dollar funding risk. Next, we characterize the effects of a rise in funding risk. For
that purpose, it is useful to index Φ by a parameter that captures the volatility of
withdrawals, σ. We make the following assumption:

Assumption 1. The CDF for the distribution of withdrawal shocks satisfyΦ∗(ω;σ∗) satisfies
Φ∗

σ∗ (ω;σ∗) > 0 for any ω < 0.

The implication is that as we increase σ∗, the risk of ending with a reserve deficit
increases for any µ∗. Hence, a shock to σ∗ captures greater funding risk. We then
have the following result:

Proposition 2 (Funding risk shock). Consider an increase in the dollar funding risk, σ∗.

Suppose that Assumption 1 holds. Then,
12Constant returns to scale in the interbank matching technology is key for this result. As banks

proportionally scale dollar deposits and reserves, given the same real returns on dollar and euro
reserves, the original liquidity ratio remains consistent with the new equilibrium. See Coppola,
Krishnamurthy and Xu (2023) for a recent study allowing for increasing returns to scale.
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1) If the shock is i.i.d, then the shock appreciates the dollar, raises the dollar liquidity ratio
µ∗, and increases DLP . In particular,

d log e

d log σ∗ =
d log µ∗

d log σ∗ =
DLPσ∗σ∗

Rb −DLPµ∗µ∗ > 0, and dDLP =R̄m∗
d log e > 0.

2) If the shock is permanent, then the shock appreciates the dollar, raises the liquidity ratio,
and DLP remains constant. In particular,

d log e

d log σ∗ =
d log µ∗

d log σ∗ = −DLPσ∗σ∗

DLPµ∗µ∗ > 0 and dDLP =0.

Proposition 2 presents a central result. In response to an increase in the risk
of funding the dollar, the dollar appreciates, and there is an increase in the dollar
liquidity ratio andDLP . Intuitively, with a larger dollar funding risk, banks demand
a greater amount of real dollar reserves. With the nominal supplies given, this must
lead to an appreciation of the dollar. Again, there is a relevant distinction between
temporary and permanent shocks. When the shock is temporary, the expected
depreciation of the dollar reduces the expected real return of holding dollar reserves.
Given the nominal rates, this implies that DLP must be higher in equilibrium for
(17) to hold. When the shock is permanent, the volatility shock appreciates the
dollar without any effects on DLP . Unlike the case of the shock to the scale of
dollar funding, in this case, the liquidity ratio increases together with the exchange
rate. In equilibrium, therefore, the increase in the liquidity ratio offsets the higher
volatility, and that is why DLP remains constant. The magnitude of the response is
proportional to the magnitude of the response of the dollar liquidity premium to σ∗,
DLPσ∗ > 0.

Proposition 2 characterizes the effects of changes in volatility for i.i.d. or perma-
nent shocks and perfectly inelastic deposit supply schedules. Yet, the results hold
for mean-reverting processes and general elasticities for deposits, as we show nu-
merically, based on a calibration described below. Figure 2 presents the results. As
the figure shows, a higher funding risk appreciates the dollar (panel a) and lowers
the expected return on dollar bonds relative to euros (panel b), reflecting the larger
dollar liquidity premium. In addition, we can see an increase in the differential rate
on deposits (panel c). That is, the rate on euro deposits increases relative to the
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Figure 2: Equilibrium as function of dollar funding risk

dollar rate as the rise in volatility makes euro deposits more attractive. Finally, we
also see an increase in the dollar liquidity ratio concomitant with a reduction in the
euro liquidity ratio (panel d).

Notice that other things equal, a higher variance in the dollar funding risk makes
dollar deposits less desirable for banks. This leads in equilibrium to a lower return
on dollar deposits, in line with the data. While this may seem to call for a lower
quantity of dollar deposits, of course, on the other side of the market are depositors
who may have a preference for dollar deposits. This can be made explicit in our
model by allowing for a larger scale of the supply of dollar deposits. Thus, the
model can account at the same time why dollar deposits are prevalent, why banks
are willing to hold dollar reserves even though the expected return is lower, and
why the dollar tends to appreciate in times of heightened uncertainty.
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The theoretical results of Propositions 1 and 2 link the funding level and the
funding risk shocks to the liquidity ratio and the exchange rate. The results suggest
that dollar funding risk may drive a positive correlation between the liquidity ratio
and the exchange rate, whereas dollar funding level shocks predict the opposite
correlation. Toward shedding further light on the connection between the theoretical
and empirical results, we generalize the results in Propositions 1 and 2 to mean-
reverting shocks. We assume that shocks to {D∗

t , σ
∗
t } follow an AR(1) process with

autocorrelation ρD
∗
, ρσ

∗ and standard deviation ΣD∗
,Σσ∗ .

Lemma 2 (Persistent shocks). The first-order effects of shocks around the steady state are
as follows:

i) In response to a small deviation to D∗ near the steady state:

ϵeD∗ ≡
log e− log ess

logD∗ − logD∗
ss

≈
−DLP∗

µ∗µ∗

(1− ρD∗)Rb −DLP∗
µ∗µ∗ ∈ (0, 1)

and
ϵµ

∗

D∗ ≡
log µ∗ − log µ∗

ss

logD∗ − logD∗
ss

≈ − (1− ρD
∗
)Rb

(1− ρD∗)Rb −DLP∗
µ∗µ∗ ∈ (−1, 0) .

ii) Suppose that Assumption 1 holds. In response to a small deviation near σ∗
ss:

ϵµ
∗

σ∗ ≡
log µ∗ − log µ∗

ss

log σ∗ − log σ∗
ss

= ϵeσ∗ ≡
log e∗ − log e∗ss
log σ∗ − log σ∗

ss

≈ DLP∗
σ∗dσ∗

(1− ρσ∗)Rb −DLP∗
µ∗µ∗ > 0.

In the empirical analysis, we will use these results to infer from the data the key
shocks driving exchange rate fluctuations.

3.3 Monetary Policy

Nominal Rates. We now study how monetary policy affects the exchange rate. We
start by considering the effect of a change in the policy rates.

Proposition 3 (Attenuation of changes in policy rates). Consider an increase in the
interest rate on dollar reserves, im∗ , holding fixed the policy spread, iw∗ − im

∗ .

1) If the shock is i.i.d, the shock appreciates the dollar less than one for one, raises the liquidity
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ratio, and reduces DLP :

d log e

d log (1 + im∗)
=

d log µ

d log (1 + im∗)
=

R̄m∗

Rb −DLPµ∗ · µ∗ ∈ (0, 1) and

dDLP = R̄m∗ (
d log e− d log

(
1 + im

∗))
< 0.

2) If the shock is permanent, the shock appreciates the dollar raises the liquidity ratio, and
reduces DLP :

d log e

d log (1 + im∗)
=

d log µ∗

d log (1 + im∗)
= − R̄m∗

DLPµ∗ · µ∗ > 0, and

dDLP = −R̄m∗
d log(1 + im

∗
) < 0.

Proposition 3 establishes that in response to an increase in the US nominal
rate, the dollar appreciates, the liquidity ratio increases and the liquidity premium
falls. This occurs regardless of whether the shock is temporary or permanent. The
appreciation of the dollar follows a standard effect: a higher nominal rate leads to a
larger demand for dollars, which in equilibrium requires a dollar appreciation. In
turn, given a fixed nominal supply of dollar reserves, there is an increase in the real
amount of reserves. In the absence of liquidity premia, the difference in nominal
returns across currencies would be exactly offset by the expected depreciation of the
dollar, following the current revaluation. With a liquidity premium, however, the
expected depreciation is not one-for-one: given the larger abundance of real dollar
reserves, there is a decrease in the marginal value of dollar reserves, together with a
reduction in dollar liquidity premium.

This result breaks the tight connection between interest-rate differentials and
expected depreciation, which is at the heart of models featuring the Fama (1984)
puzzle. In models where uncovered interest parity holds an increase in the dollar
interest rate leads to a one-for-one expected dollar depreciation, and no change in
the expected excess return on euro reserves. Here, the exogenous increase in the
dollar interest rate reduces the dollar liquidity premium, attenuating the effects on
the exchange rate.

Open-Market Operations. Finally, we consider open-market operations. In the
model description, the expansions in M are implemented with transfers—that
is, helicopter drops. In practice, central banks conduct open-market operations,
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purchasing assets and issuing central bank liabilities. Given that we interpret M
as central bank and government liabilities, we are interested in unconventional
open market operations. For that, we now modify the model by introducing an
outstanding amount of private securities St that can be held by households, Sh

t , and
by the central bank, Sg

t . We assume that these securities are perfect substitutes for
private deposits. The joint demand for the sum of deposits and securities is given by

Dt + Sh
t = Θd

t

(
R̄d

t+1

)ϵd
.

The government budget constraint is modified by adding
(
1 + idt

)
Sg
t to the sources

of funds and Sg
t+1 to the uses, to the right-hand side and left-hand side of (13)

respectively. We have analogous conditions for dollars.

Proposition 4 (Effects of open-market operations). Consider a purchase of private
securities financed with reserves by the US central bank. Let Υ∗ = P ∗SG,∗

M∗ denote the initial
value of the securities as a function of reserves.

1) If the change in the balance sheet is reversed in the following period, the shock depreciates
the dollar, raises the liquidity ratio, and reduces DLP :

d log e

d logS∗,g
t

=
DLP∗

µ∗µ∗ (1− µ∗)BP∗

Rb − (1−Υ∗)DLP∗
µ∗µ∗ < 0,

d log µ∗

d logS∗,g
t

=
RbΥ∗ (1− µ∗)

Rb − (1− Γ∗)DLP∗
µ∗µ∗ > 0, and dDLP = R̄m∗

d log e < 0.

2) If the change in the balance sheet is permanent, the shock depreciates the dollar and does
not change the liquidity ratio nor the dollar liquidity premium:

d log e

d logS∗,G = − (1− µ∗)
Υ∗

1−Υ∗ ≤ 0.

Proposition 4 establishes that a temporary openmarket operation—by increasing
the nominal supply of reserves—leads to a temporary depreciation of the dollar.
Given nominal rates on reserves, the expected appreciation leads to an increase in
the expected return on dollar reserves and an increase in the real holdings of dollar
reserves. In equilibrium, there is an increase in the liquidity ratio and a decrease in
DLP . For permanent shocks, instead, we find that the exchange rate depreciates
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permanently, and there are no effects on the liquidity ratio nor on DLP .13

3.4 Discussion and Extensions

The theory we presented articulates the idea that banks’ liquidity needs affect the
exchange rate by altering their demand for liquid assets in different currencies, and
can be extended along several directions.

Dollars as Collateral. In the model, the critical asymmetry needed to deliver a pos-
itive DLP is that the dollar funding risk must be greater, an assumption consistent
with the prevalence of the US dollar in short-term liability funding. The model,
however, can be adapted to allow for an asymmetry in settlement frictions in a way
that also generates a positive dollar liquidity premium without differences in the
dollar and euro funding risk. Specifically, assuming that banks can transfer dollar
reserves to settle withdrawals of euro deposits, it follows that if banks are in deficit
of euro reserves, they use dollar reserves before going to the euro interbank market.
With this, the return on euro reserves must exceed the one on dollar reserves, even
if the funding risks are the same in both currencies.

Risk Premia. To focus squarely on liquidity and highlight the novel channels of
our theory, we have assumed risk-neutral banks. Here, we extend our framework to
allow for risk premia and show that this yields an interesting interaction between
risk premia and liquidity premia.

We now assume that banks maximize profits using a stochastic discount factor
Λ(X,X ′), which captures the risk aversion of shareholders. Incorporating this
feature in the portfolio problem (9), we have that

E
[
Rm

t+1 −Rm∗

t+1

]
= E [χm∗ (s∗; θ∗)− χm (s; θ)]

+
COV (Λt+1, χm∗ (s∗; θ∗)− χm (s; θ)) + COV

(
Λt+1, R

m∗
t+1 −Rm

t+1

)
E [Λt+1]

. (19)

Relative to (17), eq. (19) has a risk premium associated with the liquidity
premium, the first covariance term. In addition, there is now an additional “safety
premium” term driving the difference between expected returns on the dollar and

13Our model also has predictions for the effects of foreign exchange interventions, where a central
bank swaps domestic liabilities for foreign assets. We leave this for future research.
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euro liquid assets. The safety premium represents the covariance between the
difference in the realized yields of dollar and euro liquid assets and the stochastic
discount factor. If the dollar tends to appreciate in bad times (i.e., when marginal
utility is high), this implies that dollar assets will have a lower expected rate of
return.

The two premia, the liquidity premium and the safety premium, interact. As
explained in Proposition 2, the dollar appreciates in response to a rise in the volatility
of withdrawal shocks through a higher DLP . To the extent that the rise in fund-
ing risk coincides with a high value for Λ(X,X ′), a volatility shock would further
increase the safety premium as the return on dollar assets increases when payoffs
are more valuable. Thus, modeling an endogenous liquidity premium is likely to
enhance the importance of the risk premium as a driver of exchange rates, a point
that may resolve the reserve currency paradox in risk-premiummodels documented
in Maggiori (2017).14

CIP Deviations. Our baseline model does not include an explicit forward market.
To speak to the observed deviations from covered interest parity (CIP), we now
allow for a forward market, which we assume to be perfectly competitive. A forward
contract traded at time t promises to exchange one dollar for êt,t+1 euros in the
lending stage in the following period.15 The first-order condition with respect to the
quantity of forwards purchased can be expressed as

0 = E
[

Λt+1

1 + πt+1

· (et+1 − êt,t+1)

]
. (20)

Let us examine the CIP deviation constructed using reserves. In the literature,
this is often referred to as the “Treasury basis”—that is, the yield on an actual US
Treasury (the analog of reserves in our model) minus the yield on an equivalent
synthetic US Treasury. Denoting by CIP the deviation from covered interest parity,

14Despite the prevalent view that risk premia may make the dollar a safe haven, Maggiori (2017)
shows, in a standardmodel of financial intermediation, that the dollar depreciates in times of negative
aggregate shocks. The reason is that US households are optimally more exposed to aggregate risk
and, therefore face larger losses in bad times relative to those faced by the rest of the world.

15Notice that since there are no aggregate shocks in the balancing stage, it is equivalent to pricing
the forward in the lending or the balancing stage.

26



we have that by definition

CIP = (1 + imt )−
(
1 + im

∗

t

)( êt+1

et

)
. (21)

Replacing the forward rate êt,t+1 from (20) into (21) and using (19), we can obtain

CIP =
E [Λt+1 (χm∗ − χm)]

E
(
Λt+1

(
1 + π∗

t+1

)−1
) . (22)

That is, according to our model, the CIP deviation is given by the nominal risk-
adjusted dollar liquidity premium. Accordingly, in the quantitative analysis, we
will use the empirical time series of the CIP deviation to discipline the calibration of
the model.

In addition, using (19) and (22), we obtain that the deviation from uncovered
interest parity, UIP , is given by the deviation from CIP plus the safety premium:

UIP = CIP
E
(

Λt+1

1+π∗
t+1

)
E [Λt+1]

+
COV

(
Λt+1, R

m∗
t+1 −Rm

t+1

)
E [Λt+1]

.

That is, banks are willing to hold dollar reserves at a lower return, either because
they are a good hedge or because they provide superior liquidity value.

Empirically, deviations fromUIP and CIP arewell documented (see, in particular,
Kalemli-Özcan and Varela, 2021 and Du, Tepper and Verdelhan, 2018). Here, the
wedge between the CIP and UIP deviations is due to the safety premium, but, in
practice, there can be other forces, including borrowing constraints and regulatory
constraints.16

An alternative, perhaps more common, measurement of CIP deviation is per-
formed using the interbank market rate (LIBOR) rather than the rate on government
bonds. An interesting prediction of our model is that the two deviations from CIP
are tightly linked.17

16In the quantitative analysis that follows, we will consider an exogenous wedge as a stand-in
for these factors, using a risk-neutral version of the model. An alternative that we leave for future
research is to take an explicit stochastic discount factor.

17In particular, we can show that under risk neutrality, the difference between the interbank
market-based CIP and the government bond-based CIP depends on the endogenous liquidity objects
and is given by χ+

t /Ψ
+
t − χ+,∗

t /Ψ+,∗
t .
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Finally, we highlight an interesting observation made by Du et al. (2018) regard-
ing the cross-sectional implications of the CIP deviation. Since the global financial
crisis, low-interest-rate currencies have experienced a high risk-free excess return
relative to that of the high-interest-rate currencies, a pattern that contrasts sharply
with the carry-trade phenomenon. As we showed earlier, a decrease in the nominal
interest rate increases DLP and thus raises the deviation from the CIP. Our model
is thus consistent with this pattern.18

Real exchange rate. We have considered a model with a single tradable good and
assumed that the law of one price holds. An implication is that the real exchange
rate is constant and that the exchange rate moves one-to-one with the domestic
price level for a given price in foreign currency. However, it is straightforward to
allow for non-tradable goods or deviations from the law of one price to incorporate
fluctuations in the real exchange rate. Extending the model in this direction would
allow us, for example, to speak to the positive co-movement between the nominal
exchange rate and the real exchange rate. This extension can be used to confront the
Mussa facts (see e.g., Itskhoki and Mukhin, 2021b).19

4 Quantitative Analysis

We now conduct a quantitative analysis of the model. We linearize the equilibrium
conditions of the model around the deterministic steady state. Thus, the method
preserves the nonlinearity introduced by the portfolio choice and the idiosyncratic
risk. We use data time series on the euro-dollar exchange rate, liquidity ratios, policy
variables, and observed premia to calibrate the model and estimate the shocks. In
what follows, we replace the {∗} notation with i ∈ {us, eu} because we introduce
additional currencies.

18An alternative explanation provided by Amador et al. (2020) highlights central bank policies
of resisting an appreciation at the zero lower bound. In their framework, deviations from the CIP
arise when a central bank purchases foreign reserves, and the bank’s financial constraint prevents an
arbitrage between domestic and foreign assets.

19In Itskhoki and Mukhin (2021b), when noisy traders demand more Euro bonds, the Euro
appreciates and consumption increases in Europe, yielding a real exchange rate appreciation through
consumption smoothing effects. Funding risk in our model is a natural candidate to drive the
co-movement between nominal and real exchange rates once the model is extended with multiple
goods.
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4.1 Additional Features

Before we proceed with the calibration, we explain additional features that improve
the mapping from the model to the data.

Limited equity. In the baseline model, banks have unlimited access to equity financ-
ing. This assumption fixes the return on loans to 1/β. Under this assumption all the
movements in the bond premium, BP , follow from changes in the real expected
return to dollar reserves, but not on the loan rate. To generate endogenous variations
in the loan rate, and an additional source of movements in the bond premium BP ,
we now allow for limited equity financing. Specifically, we assume that banks pay
out their realized previous-period profits as dividends—or raise equity to finance
their losses.

Open-market operations. Since unconventional open-market operations have been
prevalent since the 2008 crisis, we assume that all deviations in the money supply
away from the steady state are due to increases in the stock of securities held by
the central bank. Thus, we have Mus

t − Mus
ss = Sg,us

t , where Sg,us
t are the security

holdings of the central bank, as described in Section 3.3. We use analogous equations
for the euro.

CIP-UIP wedge. In the data, the deviation from UIP exceeds the deviations from
CIP (see, e.g., Kalemli-Özcan and Varela 2021). In our baseline model with risk
neutrality, UIP and CIP coincide. Section 3.4 shows that the model can be extended
to allow risk premia. In what follows, we introduce and measure a “risk-premium
wedge,” denoted by ξt, to express the difference between the UIP and CIP deviations,
UIP t = CIP t + ξt.

Pricing additional currencies. Our baseline model features only two currencies.
However, we can easily price additional currencies. A simple way to do so is to
assume that the deposit funding scales and reserves in all additional currencies
approach zero.20 Although its components approach zero, we can obtain a liquidity
ratio consistent with an exchange rate given policy rates in each currency.

20In the baseline model, the funding scale of different currencies is not relevant given the linearity
of the model. In the quantitative section, the assumption of limited equity implies that funding scales
do matter.
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4.2 Calibration - Estimation

We divide the parameters into three subsets. The first subset is the parameters
associated with the exogenous monetary policy variables which we calibrate by
normalizing their means and to match the observed autocorrelation and variances
of their data counterparts. The second subset is the parameters associated with
the preferences and technologies in the model, which are calibrated externally,
borrowing from the literature. The third subset is the parameters associated with
processes of the exogenous shocks to the model. We calibrate their means to match
steady-state moments and estimate their autocorrelation and variances using the
Kalman filter.

We assume that Φ, the distributions of funding risk shocks in each country, is a
two-sided mean-zero exponential distribution indexed by a σ volatility parameter.21

Parameter values are listed in Table D.1. A period in the model represents a
month. Unless otherwise noted, we employ monthly data from 2001m1 to 2016m12.
Figure D.1 presents the data series.

Calibration of monetary policy variables. The exogenous policy variables are the
interest on reserves 1 + imt and the supply of liquid assetsMt in both currencies. We
assume each of these variables follows a log AR(1) process. As data counterparts
for 1 + imt , we use the three-month US and German government bond rates for the
interest on reserves. Because in the model average inflation is zero, we calibrate
the mean of 1 + imt in the model to be the historical average of the data counterpart
minus the average inflation in the country during the sample period. As data
counterparts for Mus

t we take the sum of reserves held at Federal Reserve banks
and government securities (Treasury and agency) held by commercial banks (the
sum of TOTRESNS and USGSEC from FRED, which are found in the Fed’s H.6
and H.8 releases, respectively.) ForM eu

t we use the sum of holdings of Euro Area
Government Issued securities and Cash held by Monetary Financial Institutions
(MFI). We assume that the supply of nominal reserves assets are stationary so
that the average inflation rate and the exchange rate are stationary. Moreover, we
nomrmalizeM eu

t to obatain a nominal steady-state exchange rate of 1—see Appendix
21This distribution is convenient because it allows for a continuum of shocks but renders closed-

form solutions for the conditional expectations below a threshold. This allows us to compute the
reserve deficit probability analytically, which is convenient for the computations.
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F.1.

External calibration. We set the parameters of the interbank market matching pro-
cess (i.e., the penalty rate iw and the interbank-market efficiency and the bargaining
powers) embedded in (3), to the values from Bianchi and Bigio (2021).22 Impor-
tantly, the penalty rate iw exceeds the discount window rate set by central banks
because we interpret it more broadly as capturing stigma or collateral costs. Follow-
ing the estimation in Bianchi and Bigio (2021), we set this value to 10% annually.

The semi-elasticity of the loan demand is set to 25, as in Bianchi and Bigio (2021).
The loan demand scale Θb is set to one as a normalization. For the deposit supply
schedules, we treat the euro area and the US funding supplies as symmetric and set
both semi-elasticities to 1.

Shock processes. Next, we turn to the parameters that govern the shocks to the level
and volatility of funding, and the risk-premium wedge,

{
σus
t ,Θd,us

t , σeu
t ,Θd,eu

t , ξt

}
.

For each shock, we assume an AR(1) process. We aid the estimation by setting
their means to match average data targets and estimate their autocorrelation and
variance coefficients. We use data counterparts for {DLP ,BP∗, e, µus, µeu} which
are equilibrium objects in the model.

As a data counterpart for DLP , we use CIP deviations, in line with the analysis
in Section 3.4. To construct a series for CIP deviations, we use the mid-point quotes
for spot, the counterpart for et, and forward exchange rates from Bloomberg and the
nominal rates on reserves as data counterparts of the terms in equation (17). For the
reference period, we obtain a value of 12 basis points, in line with Du et al. (2018).
For the data counterpart of BP∗, we use a measure of liquidity proposed by Stock
andWatson (1989) and Friedman and Kuttner (1993), the commercial paper spread,
the difference between the three-month spread between the AAA commercial paper
and the three-month Treasury bill, our analog for the policy rate. We add 200bps to
this difference to consider the safety premium of AAA commercial paper over the
typical bank asset.

We construct a data counterpart for µeu, µus by dividing our data counterparts
for M eu and Mus by data counterparts for Deu and Dus, and scaling these ratios.
Regarding dollar funding,Dus, we use the sum of two sources of short-term funding

22See Appendix A for the mapping between the efficiency parameter λ and bargaining powers η
to the probabilities of matching and the interbank market rate.
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of all financial intermediaries. The first, used by Adrian, Etula and Shin (2010), is
the US dollar financial commercial paper, series DTBSPCKFM from Federal Reserve
Economic Data (FRED). Another major source of short-term funding to US banks
is demand deposits, measured by DEMDEPSL from FRED (from the Fed’s H.6
statistical release). We include funding to other financial institutions because these
are key indicators of how the demand for dollars is affected by the financial sector’s
demand for liquid assets when funding risk increases. In terms of Deu, we use the
monthly deposits redeemable at notice and deposits with agreed maturity held
by (MFI) between February 2001 to July. Since we include the funding of all US
financial institutions but only the liquid holdings of banks, we normalize µus and
µEU so that the average is 0.2 as obtained in Bianchi and Bigio (2021) by using data
from individual Call Reports.

Steady state. We next describe the parameterization of the steady-state values of
the shock processes

{
σus
ss , σ

eu
ss , ξss,Θ

d,us
ss ,Θd,eu

ss

}
. We assume symmetry in the funding

scales Θd,us
ss = Θd,eu

ss . We use the following sequential procedure to calibrate the
steady-state parameters. First, we solve for σus

ss from BP∗
ss = E [χm (µus

ss , σ
us
ss )]: taking

µus
ss and BP∗

ss from the data, σus
ss is the only unknown in this equation. Second,

once we have a value for σus
ss , we similarly obtain σeu

ss by solving it from DLP .23

At steady-state, we obtain that σus
ss is almost four times the σeu

ss consistent with our
notion that the volatility of dollar flows is larger because of their more ample use in
short-term funding market. Third, the average risk-premium, ξss, is obtained from
UIPss = DLPss + ξss, where we use UIPss = Rm

ss −Rm∗
ss , constructed by using the

historical interest differentials and average inflation rates.24 Finally, we obtain Θd,us
ss ,

which equals Θd,eu
ss , from the bank’s budget constraint: we re-arrange the budget

constraint to obtain a value for Θd,us
ss , given BP∗

ss, µ
us
ss , µ

eu
ss , σ

us
ss , σ

eu
ss .25

Filtering. We have already calibrated the means of the exogenous processes. We
now use the Kalman filter to infer the shocks to the level and volatility of funding,

23That is, DLPss = E [χm (µeu
ss , σ

eu)]− E [χm (µus
ss , σ

us
ss )].

24Kalemli-Özcan and Varela (2021) provide a comprehensive comparative analysis of different
ways to measure UIP.

25We obtain loans using b = Θb(Rm,us
ss + BPss)

−ϵb from loan market clearing. Similarly, we find
values for dusss and deuss from their corresponding clearing conditions, using the values σus

ss , σ
eu
ss . Setting

Θd,us
ss = Θd,eu

ss , and substituting {bss, dusss , deuss , µus
ss , µ

eu
ss} into the bank’s budget constraint, we obtain

a single equation for Θd,us
ss . Appendix F.1 provides a detailed discussion.
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and the risk-premium wedge,
{
σus
t ,Θd,us

t , σeu
t ,Θd,eu

t , ξt

}
from which we estimate

their autocorrelations and variances. The priors and posteriors that result from the
estimation step are reported in Table D.2.

Let us discuss which data series are informative about which inferred series. As
with the steady state, the observed bond premium is informative about the funding
risk σus

t , given that BP∗
t = E [χm (µus

t , σus)] . In turn, the CIP deviation is informative
about σeu

t , since CIP t = E [χm (µeu
t , σeu

t )]− BP t. However, within a transition, the
values of {ρx} and the internal structure lead to a forecast of the expected future
exchange rate, E

[
et+1|ξt, σus

t ,Θd,us
t , σeu

t ,Θd,eu
t

]
. Thus, given the policy rates, the ob-

served exchange rate is informative about the risk premium, ξt, given the observed
deviations of the UIP and CIP. Finally, the liquidity ratios are informative about{
Θd,us

t ,Θd,eu
t

}
in line with the results from Proposition 1.

Figure 3 presents the shocks we inferred from the Kalman filter. From panel (a),
we obtain that the dollar funding risk σus

t is close to steady state before 2007 but
increases sharply during the financial crisis and remains higher past that period. As
Figure D.1 shows, the US bond premium BP∗ increases during the financial crisis,
while the US liquidity ratio µus

t remains consistently high after the financial crisis.
To reconcile a higher liquidity ratio with a BP∗ that returns close to steady state, the
model needs a persistently high dollar funding risk, σus

t . The spikes in σus
t that we

observe between 2007-2009 likely reflect a dysfunctional dollar interbank market.
In turn, the persistent rise of σus

t after the crisis can be attributed to several factors,
including the increase in counterparty risk and stricter liquidity regulation, which
included the liquidity coverage ratio and the net stable funding ratio (Copeland et
al., 2021).

Panel (b) presents the inferred euro funding risk σeu
t . The euro funding risk is

substantially lower and more stable compared to the dollar’s. There are a couple
of dips and reversals around 2008 and the 2012 European debt crisis, which the
estimation picks up from fluctuations in the CIP deviations. Panels (c) and (d)
show the path of the scale of dollar and euro funding. The two variables exhibit
low-frequency movements that reflect only secular trends in funding by currency.26

The risk premium wedge in panel (e) features a sizable negative value in early 2000,
which we attribute to difficulties in forecasting the euro-dollar exchange rate during

26For the dollar, we see a secular decline up to 2008 and a subsequent increase. For euros, we see
an increase up to the 2012 crisis and then a decrease.
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Figure 3: Estimated Shocks using the Kalman filter

the early inception period of the euro.27

By construction, the model reproduces the target moments. Table D.3 shows
that, in addition, the estimated shocks deliver an exchange-rate persistence and
standard deviation close to the data.

4.3 The role of liquidity

The particularly volatile behavior of the filtered shocks to the dollar funding risk, σus
t ,

hints that liquidity factors are important drivers of exchange rate fluctuations. We
now pay special attention to the contribution of funding risk shocks in explaining
the unconditional moments and historical patterns of exchange rates and premia.

How important are liquidity factors? We begin with a variance decomposition. We
group the shocks to the funding scale, Θx

t , the funding risk, σx
t , and the supply of

reserve assets, Mx
t , for x ∈ {us, eu} into the liquidity group. Shocks to the policy

rates in both countries and the risk-premium wedge form corresponding groups.
27This negative value captures that the euro was stronger than predicted from (17). After that

initial transition, we see that the wedge fluctuates around zero with some spikes around 2008 and
2012.
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Table 1: Variance Decomposition

Shock e BP∗ CIP

Liquidity 35% 99% 94%
Risk Premium 35% <1% 3%
Policy Rates 30% <1% 3%

Note: The variance decomposition is obtained from the model’s
estimated reduced form representation.

The results are presented in Table 1. Liquidity factors account for 35% of the variance
of the euro-dollar exchange rate (panel a), 99% of the variance of the dollar bond
premium (panel b), and 94% of the variance of the CIP deviation (panel c). When
we further decompose the variance of the exchange rate by the contribution of
the constituents of the liquidity factors, following the classification outlined above,
funding risk turns out to be the main factor. Alone, funding risk drives 50% of the
contribution of liquidity factors to the variance in the euro-dollar exchange rate,
88% of the variance of the dollar bond premium, and 84% of the contribution to the
variance of the CIP deviation.

Historical Decomposition and Counterfactuals. Next, we perform a historical
decomposition of the evolution of the euro-dollar exchange rate during our sample
period. Figure 4 presents the results. The solid series is the percentage deviation
of the euro-dollar exchange rate from the steady state. The vertical bars are the
contribution of each group of shocks. For this exercise, we unpack the contribution
of the liquidity factor into its components (liquidity risk, liquidity scale, and reserve
supply) and present these together with the contribution of policy rate shocks
(policy) and the risk premium wedge. To compute the contribution of each shock,
we turn off the shock in each period by setting the value equal to the steady state
and keeping the rest of the shocks on. The main takeaway is that since the 2008
financial crisis, funding risk has played a prominent role in accounting for a stronger
dollar, an effect that has partially been offset by the large increase in the supply of
dollar reserves.

To zoom in on the role of funding risk during the period, in Figure 5, we present
the time series of the exchange rate togetherwith twomeasures of CIP deviations—in
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terms of interbank and bond-market rates. We present the data, the model, and the
counterfactual without the US funding risk shock (panels a, b, and c respectively).
Consistent with the analysis, the counterfactual shows a much lower deviation from
CIP (using both interest rates on reserves and the rates in the interbank market,
as explained in Section 3.4) and a more depreciated dollar. Of course, the period
post-2008 has also been a period of ample reserves, which offsets the effect of a
greater funding risk.
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Figure 4: Shock Decomposition
Note: The figure reports the contribution of different groups of shocks in explaining the
exchange rate.

The counterfactual exercises speak to a burgeoning literature on convenience
yield on government bonds and the implications for foreign exchange markets
(Jiang et al. 2021; Engel and Wu, 2023). To see this more clearly, Panel (d) shows
the counterfactual value for the BP∗ series, our measure of the convenience yields.
Without the shock, convenience yields would have been compressed, considering
the expansion in reserves that occurred during the period. Panels (e) and (f) show
untargeted series that are, again, consistent with the pattern. Panel (e) shows
the TED spread deviation, the difference between the interbank rate (the data
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Figure 5: Counterfactual without σus

Note: The figure reports the predicted series of the model with all shocks and a
counterfactual without σus

t . The funding spread, the TED spread, and the conve-
nience yield are interpreted as Rd,us −Rm,us, Rf,us −Rm,us, Rb −Rm respectively.
The Ted and Funding spreads are reported as deviations from the historical mean.

counterpart is the effective Federal Funds rate) and the policy rate. The model and
the data show a consistent pattern of large deviations from the mean during the
crisis, with a normalization period starting in 2010, although clearly, the scale of
the deviations in the data is much larger than in our model. Panel (f) shows the
funding spread: the difference between the deposit rate—the data counterpart is
the 4-week certificate deposit—and the policy rate. While untargeted, the fit to this
series is also very good. The counterfactual shows that offered savings rates would
have been lower without the liquidity risk shock post-crisis.

Taking Stock. Our findings show that liquidity factors are just as important as
changes in risk compensation and policy rates, which previous research has mainly
focused on. We view these results as reflecting a connection between the dollar’s
dominance in the international payments system and the associated bank funding
risks. In particular,
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1. The model suggests that the dollar liquidity premium is linked to increased
funding risk. Our interpretation is that because the dollar is widely used in
international transactions, this leads to a larger flow of dollar deposits relative
to euros. From the perspective of banks, this means greater funding risks.

2. Many studies have argued that the dollar is a safe haven for investors during
times of financial turmoil. We interpret the rise in observed funding risk
during the crisis as a sign of the safety of the dollar and the prevalence of the
dollar in the short-term funding market.

3. Finally, there has been an increase in funding risk after the global financial
crisis as indicated by the rise in CIP deviations. We interpret this as emerging
from the rise in liquidity and capital regulations post 2008 that generated a
rise in the dollar liquidity premium.

The theory thus calls for a further examination of the dollar’s international
dominance, in particular regarding the role of banks’ funding risks and the impact
of regulation. The notable “dash for cash” experienced in March 2020 came to a halt
only after the Federal Reserve implemented a series of liquidity programs. In fact,
transaction data, as analyzed by Cesa-Bianchi and Eguren-Martin (2021) revealed
that the surge in demand for cash was predominantly a rush for dollars.

Next, we test our theory by providing evidence that a quantity variable, the
liquidity ratio, is indeed correlated with various exchange rates, as predicted by the
model.

4.4 Empirical test and model validation

The previous section suggests that liquidity funding risk played a prominent role in
determining exchange rates during the sample period. In Section 3, we argue that
the nature of shocks and their persistence drive the statistical relationship between
the liquidity ratio and the exchange rate. A signature test of our theory and, in
particular, of the relevance of liquidity funding risk is to obtain significant and
positive regression coefficients in the data when regressing changes in the exchange
rate to changes in the liquidity ratio. Before proceeding with the test, we formalize
this insight in the following proposition the theoretical prediction of the model.
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Proposition 5 (Regression coefficients). Consider a steady state. Then, up to first order,
the regression coefficient of the change in the exchange rate against the change in the liquidity
ratio is:

βe
µ∗ =

∑
x∈{σ∗,D∗}

ϵex
ϵµ

∗
x

·wx,

where
ϵeσ∗

ϵµ
∗

σ∗
= 1 and ϵeD∗

ϵµ
∗

D∗

=
DLP∗

µ∗µ∗

(1− ρD∗)Rb
< 0,

with weights given by

wσ∗
=

(
ϵµ

∗

σ∗Σσ∗
)2 (

1−
(
ρD

∗)2)(
ϵµ

∗

σ∗Σσ∗)2 (1− (ρD∗)2
)
+
(
ϵµ

∗

D∗ΣD∗)2 (1− (ρσ∗)2
) = 1−wD∗

.

The proposition shows that the regression coefficient of the liquidity ratio against
the exchange rate is a weighted average of the effects of changes in volatility and
deposit supply on the correlation between the changes in the exchange rate and the
liquidity ratio.

Test results. To conduct our test on multiple currencies, we further collect data for
the price of US dollar against the other nine G10 currencies and their corresponding
inflation rates and interest-rate levels.28

We test our theory by estimating the following regression for each currency i:

∆et = α + β1∆Liqt + β2(πt − π∗
t ) + β3Liqt−1 + ϵt. (23)

In this regression,∆(xt) is the change from t− 1 to t in the variable xt; et is the log of
the exchange rate expressed as the G10 currency price of a US dollar; Liqt is the log
of the liquidity ratio described above; πt − π∗

t is the difference between year-on-year
inflation rates in each of the nine countries against the US inflation.

Our regression specification also includes the year-on-year inflation rate. Central
banksmay follow a policy rule that sets the policy instrument in response to inflation,
so higher home-country inflation leads to tightermonetary policy and an appreciated

28The other currencies are the Australian dollar, the Canadian dollar, the Japanese yen, the New
Zealand dollar, the Norwegian krone, the Swedish krona, the Swiss franc, and the UK pound. The
inflation for Australia and New Zealand is reported only quarterly.
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currency. Our model, however, abstracts from such a monetary policy rule.

Table 2 reports the results of the regression for the nine exchange rates. The
coefficient of interest is β1. If the dollar funding risk drives Liqt, then we also expect
a positive relationship between this variable and et; that is, β1 should be positive.
With the exception of Japan, the liquidity ratio variable has the expected positive
sign and is statistically significant at the 1% level for all exchange rates.

Table 2: Exchange Rates and Liquidity Ratio: Feb. 2001 – July 2021
EUR AUS CAN JPN NZ NWY SWE CH UK

∆(Liqt) 0.227*** 0.256*** 0.127*** -0.134*** 0.287*** 0.187*** 0.212*** 0.141*** 0.165***
(4.839) (4.106) (2.723) (-2.846) (4.458) (3.125) (3.754) (2.724) (3.529)

πt − π∗
t -0.800*** -0.657*** -0.407** 0.011 -0.726*** -0.126 -0.465** -0.565*** -0.335**

(-3.972) (-2.998) (-1.982) (0.084) (-3.299) (-0.873) (-2.530) (-2.644) (-1.985)
Liqt−1 0.008* 0.005 0.007 0.002 0.004 0.010* 0.006 0.005 0.008

(1.890) (0.796) (1.554) (0.307) (0.696) (1.730) (1.109) (0.985) (1.628)
Constant -0.010*** -0.002 -0.006* -0.001 -0.005 -0.007 -0.008** -0.015*** -0.006

(-3.097) (-0.595) (-1.877) (-0.120) (-1.188) (-1.618) (-1.978) (-2.966) (-1.569)
N 246 246 246 246 246 246 246 246 246
adj. R2 0.11 0.07 0.03 0.02 0.09 0.03 0.06 0.03 0.04

Note: t statistics in parentheses. * p<0.1, ** p<0.05, *** p<0.01

Table 3: Model Regression Coefficients
EUR AUS CAN JPN NZ NWY SWE SWZ UK

∆(Liqt) 0.136** 0.179 0.188*** 0.188*** 0.182*** 0.171*** 0.179** 0.186*** 0.182***
(2.021) (1.591) (3.0813) (3.0813) (2.166) (2.671) (2.35) (3.049) (2.637)

πi
t − π∗

t 0.208* 0.236* 0.197* 0.197* 0.2262** 0.203* 0.218* 0.198* 0.212*
(1.667) (1.255) (1.890) (01.890) (1.975) (1.780) (1.602) (1.767) (1.683)

Liqt−1 0.006 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008
(0.235) (0.255) (0.388) (0.388) (0.351) (0.439) 0.312) (0.360) (0.339)

Constant 0.010 0.014 0.011 0.011 0.013 0.011 0.012 0.011 0.012
(0.273) (0.252) (0.336) (0.249) (0.291) (0.367) (0.290) (0.334) (0.375)

N 234 234 234 234 234 234 234 234 234
adj. R2 0.045 0.030 0.067 0.066 0.044 0.058 0.050 0.066 0.056

Note: The coefficients reported are averages over 4273 simulations of 234 periods. Standard deviations
are in parenthesis.

The significance of the coefficient is indeed a validation of our theory and, con-
cretely, of the role of funding risk. We should stress that∆Liqt, is not a price variable
but a quantity variable. Finding significant statistical relations between exchange
rates and quantity variables has been elusive in international finance analysis. The
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significance of the coefficients for most currencies shows that liquidity can “explain”
exchange rate movements without relying on a measure of liquidity that is contami-
nated with exchange rates.29 The sign of the coefficient indicates a prevalent role of
funding risk, as theoretically shown in Proposition 5.

Finally, we observe that the results also show a negative relationship between the
change in a country’s inflation rate and its exchange rate. This result is in line with
much of the empirical literature and is consistent with monetary policy rules that
follow inflation targeting, as noted previously. Another point worth highlighting
is that our regressions are about current realized depreciation, not forecast future
depreciation. We do not control for nominal interest rates in our baseline regressions
as in standard UIP regressions, which are predictive regressions. However, our
results are very similar if we add these controls, and the interest rates are not
significant during this period.

Robustness of the Regression Analysis. We also investigate whether the data test
results survive under different specifications. For starters, several asset-pricing stud-
ies have found that VIX–which is a measure of market uncertainty—has explanatory
power in accounting for the movements of many asset prices. One possible concern
is that if we were to include VIX, this would reduce the significance of liquidity
and thus reduce the importance of funding risk in our regressions. In Table G1, we
include the change in VIX along with the other variables. As expected, VIX has
positive coefficients in all cases (except again for Japan) and is statistically significant
(i.e., an increase in VIX is associated with an appreciation of the dollar). However,
the regressions show that including the VIX does not reduce the significance of the
liquidity ratio for any of the countries, and it has only a minor effect on the magni-
tude of the coefficient. This suggests that funding risk, as measured by the liquidity
ratio, contributes to explaining the exchange rate beyond market uncertainty.

In the appendix, we also perform a number of additional robustness exercises.
We show that our results are very similar whenwe use alternative liquiditymeasures
that include broader measures of short-term funding. We also demonstrate that
when we use balance sheet data exclusively from foreign-related banks in the US,
the relationship between the liquidity ratio of dollar liquid assets to dollar funding

29This happens in recent empirical studies that use the share of dollar assets as an explanatory
variable (see, e.g., Adrian and Xie, 2020.).
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and dollar exchange rates still holds. Moreover, we also show that when we break
the sample, we find larger coefficients during the pre-European debt crisis, but for
most countries, liquidity remains significant after the crisis.

Finally, one important point to highlight is that the regressions should only
be interpreted as a summary statistic of the comovement between liquidity and
exchange rates—in line with the theory above. This is because the liquidity ratio is
not exogenous. A plausible exogenous source of variation that is correlated with the
liquidity ratio is the monthly average of the intra-daily Fed Funds spread—i.e., the
difference between the high and low Fed funds rate transacted on each day. This
measures interbank market disturbances and to the extent that the effects on the
exchange rate occur primarily through banks’ liquidity management, we can use an
instrumental variable approach to isolate the effects of funding risk on exchange
rates. As we show in Appendix G, our main conclusions remain robust in this case
as well.

We do not further explore the relationship between measures of the convenience
yield on government liquid liabilities and exchange rates, as that has already been
extensively documented in studies such as Jiang et al. (2021) and Engel and Wu
(2023). The appendix does present evidence of a significant statistical relationship
between our measures of the liquidity ratio and the relative dollar convenience yield
used in these previous studies.

Model vs. data. The empirical tests are motivated by our theoretical results regard-
ing the relationship between the liquidity ratio and exchange rates fleshed out in
Proposition 5. Although our filtering exercise is meant to match the historical series
for the exchange rate and the liquidity ratio, there is no reason why the underlying
estimated stochastic processes for shocks should allow the model to reproduce the
regression coefficients of the empirical tests. Next, we use the model estimates and
conduct Monte Carlo simulations to compare regressions in the model with the data
counterparts.

For the simulations, we assume that the liquidity and risk premia shocks to
all currencies other than the dollar are the same as those of the euro. In turn, we
estimate the processes for the countries’ nominal policy rates, which we feed directly
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from the data.30 We then simulate the corresponding shocks in each currency and
obtain a predicted exchange rate for each currency. We then contrast the empirical
relationship between the dollar liquidity ratio and the different exchange rates in
the data and those predicted by the model. We simulated 1 million observations,
which we split into sub-samples of 246 periods corresponding to the data sample.

We report the simulation-based regression coefficients for all sub-samples in
Table 3. The main takeaway is that the simulation-based regression delivers a
positive value and is similar to the data coefficients for the effect of the liquidity
ratio on the exchange rate. A discrepancy worth highlighting is that the Japanese
yen delivers a negative coefficient in the data and a positive one in the model. We
reconcile this discrepancy by allowing funding shocks to the Yen that are correlated
with the US funding risk shocks.31

5 Conclusions

This study develops a theory of exchange rate determination emerging fromfinancial
institutions’ demand for liquid dollar assets. Periods of increased funding volatility
generate a “scrambling for dollars” effect that raises liquidity premia and appreciates
the dollar. In line with the theory, we document that a higher liquidity ratio in the
financial system is associated with a stronger dollar. We also use the model as a
quantitative laboratory to decompose the different forces driving exchange rate
fluctuations. We conclude from our analysis that funding risk is a crucial factor
driving fluctuations in exchange rates.

Our framework can be extended in several directions. For example, it would
be interesting to allow for a richer production structure and nominal rigidities to
analyze conventional channels of monetary policy. In addition, our model offers
a framework to study foreign exchange interventions, swap lines, and other less
conventional policies. We leave this for future research.

30Thus, the only difference between the euro-dollar and other exchange rates stem from interest-rate
differentials.

31In Appendix E we present a robustness exercise, where we allow demand shifters of the Yen
and Swiss Franc funding correlated with funding risk that can replicate the more tenuous statistical
relationship that holds for these two currencies in the broader set of regressions we display in the
appendix. Another discrepancy is that we obtain a positive coefficient for inflation in the model and
a negative in the data. In the data, the currency appreciates when past inflation is high due to central
banks targeting inflation. We do not model an inflation targeting rule in our model, and instead have
an exogenous money supply, so higher inflation leads to a depreciation.
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A Expressions for {Ψ+,Ψ−, χ+, χ−}

Here we reproduce formulas derived from Proposition 1 in Bianchi and Bigio (2017). That
proposition gives us the formulas for the liquidity yield function and the matching proba-
bilities as functions of the tightness of the interbank market.

The average interbank rate is:

Rf = (1− η̄ (θ))Rw + η̄ (θ)Rm

where η̄ (θ) is an endogenous bargaining power given by

η̄ (θ) ≡


θ

θ−1

((
θ̄
θ

)η
− 1
)
(exp (λ)− 1)−1 if θ > 1

η if θ = 1
θ(1−θ̄)−θ̄

θ̄(1−θ)

((
θ̄
θ

)η
− 1
)
(exp (λ)− 1)−1 if θ < 1

.

and η is a parameter associated with the bargaining power of banks with reserve deficits in
each trade—a Nash bargaining coefficient. In addition, θ̄ represents the market tightness
after the interbank-market trading session is over:

θ̄ =


1 + (θ − 1) exp (λ) if θ > 1

1 if θ = 1(
1 +

(
θ−1 − 1

)
exp (λ)

)−1 if θ < 1

.

The parameter λ captures the matching efficiency of the interbank market. Trading proba-
bilities are given by

Ψ+ =

{
1− e−λ if θ ≥ 1

θ
(
1− e−λ

)
if θ < 1

, Ψ− =

{(
1− e−λ

)
θ−1 if θ > 1

1− e−λ if θ ≤ 1
. (A.1)

Finally, using 4 and 5, we arrive at the parameters of the liquidity yield function χ:

χ̄+ = (Rw −Rm)

(
θ̄

θ

)η (
θη θ̄1−η − θ

θ̄ − 1

)
and χ̄− = (Rw −Rm)

(
θ̄

θ

)η (
θη θ̄1−η − 1

θ̄ − 1

)
.

(A.2)
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B Proofs

B.1 Preliminaries

Here we provide some intermediate results that we use to prove the propositions.
Recall that the liquidity ratio is denoted by µ ≡ m/d and θ = S−/S+ where S− =

−
´
min {s, 0} dΦ (ω), S+ =

´
max {s, 0} dΦ (ω) and s = m+ ωd. Then,

θ =−

´
{s<0} s · dΦ (ω;σ)´
{s>0} s · dΦ (ω;σ)

,

=−
mΦ ({s < 0} ;σ) + d

´
{s<0} ω · dΦ (ω;σ)

m (1− Φ ({s > 0} ;σ)) + d
´
{s≥0} ω · dΦ (ω;σ)

.

Note that s < 0 occurs when ω < −µ. Therefore, we express the interbank market tightness
as:

θ =−
´ −µ
−∞ (µ+ ω) · dΦ (ω;σ)´∞
−µ (µ+ ω) · dΦ (ω;σ)

. (B.1)

With abuse of notation, define θ (µ, σ) as the function that maps µ and σ into a value of θ
(thus, in equilibrium, θ = θ (µ, σ)). We have the following Lemma:

Lemma B.1. Interbank market tightness is decreasing in the liquidity ratio. That is, dθ
dµ < 0.

Moreover, θ ∈ [0, 1].

Proof. From (C.1), using Leibniz rule, we obtain

dθ

dµ
= θ

(
Φ (−µ;σ)´ −µ

−∞ (µ+ ω) · dΦ (ω;σ)
− 1− Φ (−µ;σ)´∞

−µ (µ+ ω) · dΦ (ω;σ)

)
. (B.2)

By definition of conditional expectation:

E [µ+ ω|ω < −µ] =

ˆ −µ

−∞
(µ+ ω) · dΦ (ω;σ) /Φ (−µ;σ) ,

and
E [µ+ ω|ω > −µ] =

ˆ ∞

−µ
(µ+ ω) · dΦ (ω;σ) / (1− Φ (−µ;σ)) .

Replacing these definitions into (C.2), we obtain:

dθ

dµ
= θ ·

(
1

E [µ+ ω|ω < −µ]
− 1

E [µ+ ω|ω > −µ]

)
< 0,

where the inequality follows because E [µ+ ω|ω < −µ] < 0 and E [µ+ ω|ω > −µ] > 0.
Finally, the bounds on θ follow because limµ→∞ θ = 0 and θ = 1 if µ = 0.

2



Next, we obtain the derivative of interbank market tightness with respect to σ.

Lemma B.2. Under Assumption 1, we have that ∂θ
∂σ > 0.

Proof. Passing the differential operator inside the integrals in the numerators, we have that:

∂θ

∂σ
= θ ·

( ´ −µ
−∞ (µ+ ω)ϕσdω´ −µ

−∞ (µ+ ω) · dΦ (ω;σ)
−

´∞
−µ (µ+ ω)ϕσdω´∞

−µ (µ+ ω) · dΦ (ω;σ)

)

= θ ·

(
∂

∂σ

[
log

(´ −µ
−∞ (µ+ ω) · dΦ (ω;σ)´∞
−µ (µ+ ω) · dΦ (ω;σ)

)])
.

Since the withdrawal shock is zero mean,
ˆ −µ

−∞
(µ+ ω) · dΦ (ω;σ) +

ˆ ∞

−µ
(µ+ ω) · dΦ (ω;σ) = µ.

Therefore, identity this condition into the derivative just above we obtain:

∂θ

∂σ
= log

(
µ−
´∞
−µ (µ+ ω) · dΦ (ω;σ)´∞

−µ (µ+ ω) · dΦ (ω;σ)

)
.

Therefore, ∂θ
∂σ > 0 holds if and only if:

∂

∂σ

[ˆ −µ

−∞
(µ+ ω) · dΦ (ω;σ)

]
< 0.

Using the integration by parts formula:
ˆ −µ

−∞
(µ+ ω)ϕσ (ω;σ) dω = (µ+ ω) Φσ (ω;σ) |−µ

−∞ −
ˆ −µ

−∞
Φσ (ω;σ) dω

= −
ˆ −µ

−∞
Φσ (ω;σ) dω < 0

where the last equality follows from limω→−∞ ((µ+ ω)) Φσ (ω;σ) =
∂
∂σ [limω→−∞ ((µ+ ω)) Φ (ω;σ)] =

0 and the strict inequality follows from Assumption 1. We conclude that, ∂θ
∂σ > 0.

We will also use the results from the following Lemma.

Lemma B.3. The liquidity coefficients have the following derivatives:

∂χ+

∂µ
=

∂χ+

∂θ

∂θ

∂µ
< 0 and ∂χ−

∂µ
=

∂χ−

∂θ

∂θ

∂µ
< 0, (B.3)

∂χ+

∂σ
=

∂χ+

∂θ

∂θ

∂σ
> 0 and ∂χ−

∂µ
=

∂χ−

∂θ

∂θ

∂σ
> 0, (B.4)
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∂χ̄+

∂Pt
=

χ̄+

Pt
and ∂χ̄−(θ)

∂Pt
=

χ̄−

Pt
. (B.5)

Proof. Notice first that ∂χ+

∂θ > 0 and ∂χ−

∂θ > 0 is an immediate result from their definitions in
equations (A.2). Applying Lemmas C.1 and C.2, we obtain respectively (C.3) and (C.4).

In addition, we can express (A.2) as

χ̄+ =
Pt

Pt+1
(iw − im)

(
θ̄

θ

)η (
θη θ̄1−η − θ

θ̄ − 1

)
, χ̄− =

Pt

Pt+1
(iw − im)

(
θ̄

θ

)η (
θη θ̄1−η − 1

θ̄ − 1

)
(B.6)

Equation (C.5) follows immediately.

It is useful to define L(µ, σ, P ) to be the bond liquidity premium as a function of the
liquidity ratio, the index σ and the current price level. That is,

L(µ, σ, P ) = (1− Φ(−µ, σ)) · χ̄+ (θ(µ, σ), P ) + Φ(−µ, σ) · χ̄− (θ(µ, σ), P ) (B.7)

In equilibrium L(µ, σ, P ) = Rb −Rm. We have the following result.

Lemma B.4. The liquidity bond premium is decreasing in the liquidity ratio and increasing in
volatility. That is, Lµ < 0 and Lσ > 0. In addition, LP = −L/P .

Proof. From (C.7), differentiating L with respect to µ:

Lµ =
[
(1− Φ(−µ, σ)) · χ+

θ +Φ(−µ, σ) · χ−
θ

]
−
(
χ̄− − χ̄+

)
ϕ (−µ, σ) . (B.8)

Using that ∂θ
∂µ < 0 from Lemma C.1 and that χ̄− > χ̄+, we arrive at Lµ < 0.

From (C.7), differentiating L with respect to σ yields:

LPσ =
∂θ

∂σ

[
(1− Φ(−µ, σ)) · χ+

θ +Φ(−µ, σ) · χ−
θ

]
+
(
χ̄− − χ̄+

)
Φσ (−µ, σ) . (B.9)

Using that ∂θ
∂σ > 0 from Lemma C.2 and that χ̄− > χ̄+, we conclude that Lσ > 0. Finally,

the expression for LP follows directly from differentiating L with respect to P in (C.5).

We now proceed with the proofs and use that these properties apply for both euros and
dollars.

B.2 Proof of Proposition 1

Proof. Part i). By definition, the liquidity ratio µ∗ is given by

µ∗(P ∗, D∗) =
M∗/P ∗

D∗ (B.10)
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where we made explicit the dependence of µ∗ on (P ∗, D∗). Using thatM∗ is exogenously
given, totally differentiating (C.10) yields

dµ∗ = −µ∗
(
dP ∗

P ∗ +
dD∗

D∗

)
. (B.11)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗, D∗), P ∗). (B.12)

Totally differentiating (C.12) with respect to P ∗ and D∗, and using (C.11), we obtain:

−Rm,∗
(
dP ∗

P ∗

)
= −L∗

µ∗

[
µ

(
dP ∗

P ∗ +
dD∗

D∗

)]
+ L∗

PdP
∗ (B.13)

where E[P ∗(X ′)] remains constant because the shock is i.i.d. and the loan rate is constant at
Rb = 1/β.

Using L∗
P ∗ = L∗

P ∗ from Lemma C.4, Rb = Rm,∗ +L∗ and replacing in (C.13), we arrive to

d logP ∗

d logD∗ =
L∗
µ∗µ∗

Rb − L∗
µ∗µ∗ ∈ (−1, 0) . (B.14)

The bounds follows immediately because L∗
µ < 0 as established in Lemma C.4 and from

Rb > 0.

Notice also that the euro bond premium remains constant. To see this, we can replace
µ = (M/P )/D in (15) and use (C.1) to obtain

Rb − (1 + im)
P

E[P (X ′)]
=

(
1− Φ

(
−M/P

D

))
χ̄+(θ((M/P )/D, σ))+

Φ

(
−M/P

D

)
χ̄−(θ((M/P )/D, σ)). (B.15)

From (C.15), it follows that P must be constant and thus µ and L are also constant. As a
result, dL∗ = dDLP , dL∗

µ∗ = dDLPµ∗ .

By the law of one price and using that P remains constant, we then have d log e
d logD∗ =

− L∗
µµ

∗

Rb−L∗
µµ

∗ which implies an appreciation of the dollar. Finally, we can rewrite (C.13) as
R̄m,∗ (d log e) = dL∗ = dDLP .

Part ii). When the shock is permanent, expected inflation remains constant. Moreover,
given that nominal policy rates and expected inflation are constant, we have from (16) that
L∗ is constant. Hence, DLP is constant. Furthermore, the fact that L∗ is constant, implies
that µmust also be constant. Thus, using that (C.11) and thatM∗ is constant, we have from
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the law of one price that:
d log e

d logD∗ = −d logP ∗

d logD∗ = 1.

B.3 Proof of Proposition 2

Proof. Part i). Totally differentiating (C.10) with respect to P ∗ yields

dµ∗ = −µ∗
(
dP ∗

P ∗

)
. (B.16)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗, σ∗), P ∗). (B.17)

Totally differentiating (C.17) with respect to P ∗ and σ∗ and using (C.16) yields:

−Rm,∗
(
dP ∗

P ∗

)
= −L∗

µ

[
µ

(
dP ∗

P ∗

)]
+ L∗

σ∗dσ∗ + L∗
PdP

∗ (B.18)

where we used that E[P ∗(X ′)] is constant because the shock is i.i.d. and Rb = 1/β.
Using L∗

P ∗ = L∗

P ∗ from Lemma C.4, Rb = Rm,∗ + L∗, and replacing in (C.16) , we obtain

d logP ∗

d log σ∗ = − L∗
σ∗σ

Rb − L∗
µµ

∗ < 0 (B.19)

where the sign follows from Lemma C.4. Notice also that the euro bond premium remains
constant, and so do P , µ and L, as demonstrated in the proof of Proposition 1.

By the law of one price, and using that P remains constant, we then have d log e
d logD∗ =

L∗
σσ

∗

Rb−L∗
µµ

∗ which implies an appreciation of the dollar. Finally, we can rewrite (C.18) as
R̄m,∗ (d log e) = dL∗ = dDLP .

Part ii). When the shock is permanent, expected inflation is constant. Given that nominal
policy rates are constant, L∗ and DLP are constant. Thus,

L∗
µ∗dµ∗ + L∗

σ∗dσ∗ = 0 (B.20)

and so
d logµ∗

d log σ∗ = −L∗
σ∗σ∗

L∗
µ∗µ∗ > 0 (B.21)

where the sign follows from L∗
µ∗ < 0 and L∗

σ∗ > 0 from Lemma C.4. Using that d logµ∗ =

−d logP ∗, from the law of one price, d log e∗

d log σ∗ = d logµ∗

d log σ∗ .
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B.4 Approximation to Mean Reverting Shocks

Proof. We now derive approximate analogues to propositions 1 and 2 for cases where shocks
are mean reverting. In particular, shocks follow a log AR(1) process:

log (xt) = (1− ρx) log (xss) + ρx · log (xt−1) + Σxεxt . (B.22)

We have the following result. We use xss to refer to the deterministic steady-state value of
any variable x. The proof extends the results in Propositions 1 and 2. We first show this
intermediate result. In the model, prices are a function of the aggregate state, X . Thus, an
equilibrium will feature a function P ∗ (Xt) such that P ∗

t = P ∗ (Xt). Then, near the steady
state, using a Taylor expansion of first-order with respect to the variable x. We have that:

logP ∗
t ≈ logP ∗

ss +
P ∗
x (xss)xss

P ∗
ss

xt − xss
xss

.

Thus, we have that for small deviations around the steady state:

d logP ∗
t ≈ P ∗

x (xss)xss
P ∗
ss

d log xt. (B.23)

Shifting this condition forward:

d logP ∗
t+1 ≈

P ∗
x (xss)xss

P ∗
ss

d log xt+1

Taking expectations:

E
[
d logP ∗

t+1

]
≈ P ∗

x (xss)xss
P ∗
ss

ρxd log xt. (B.24)

Dividing the left-hand side of (C.24) by (C.23),

E
[
d logP ∗

t+1

]
d logP ∗

t

= ρxd log xt. (B.25)

Next, we proof themain items of the propositions. The proof uses that for either currency:

∂χ̄+

∂Pt+1
= − χ̄+

E [Pt+1]
, and ∂χ̄−(θ)

∂Pt+1
= − χ̄−

E [Pt+1]
. (B.26)

Hence:
L∗
P ∗
t+1

= − L∗

P ∗
t+1

Recall that the dollar liquidity premium can be expressed as

Rb − (1 + im,∗)
P ∗
t

E
[
P ∗
t+1

] = L∗(µ∗(P ∗, D∗), P ∗
t , P

∗
t+1), (B.27)

where we now make explicit that L∗ depends on both Pt and Pt+1.
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Part (i). We present here the proof for item (i). Totally differentiating (C.27) with
respect to Pt, Pt+1, and D∗ and using (C.11) near the steady state, we obtain

−Rm,∗
(
dP ∗

t

P ∗
t

)
+Rm,∗E

[
dP ∗

t+1

]
E
[
P ∗
t+1

] = −L∗
µ∗µ∗

(
dP ∗

t

P ∗
t

+
dD∗

t

D∗
t

)
+ L∗

P ∗
t
dP ∗

t − L∗
P ∗
t+1

E
[
dP ∗

t+1

]
.

(B.28)
Then, collecting terms:

− (Rm,∗ + L∗)

(
1−

E
[
d logP ∗

t+1

]
d logP ∗

t

)
d logP ∗

t = −L∗
µ∗µ∗

(
dP ∗

t

P ∗
t

+
dD∗

t

D∗
t

)
. (B.29)

Substituting Rb = Rm,∗ + L∗ and (C.25), we obtain:

Rb
(
1− ρD

∗
)
d logP ∗

t ≈ L∗
µ∗µ∗

(
dP ∗

t

P ∗
t

+
dD∗

t

D∗
t

)
.

Thus, we obtain
d logP ∗

d logD∗ ≈
L∗
µ∗µ∗

(1− ρD∗)Rb − L∗
µ∗µ∗ < 0.

Then, it follows from the law of one price and the differential form of µ that

ϵeD∗ ≡ d log e

d logD∗ ≈ −
L∗
µ∗µ∗

(1− ρD∗)Rb − L∗
µ∗µ∗ ∈ (0, 1) ,

and
ϵeµ∗ ≡ d logµ

d logD∗ ≈ − (1− ρD
∗
)Rb

(1− ρD∗)Rb − L∗
µ∗µ∗ ∈ (−1, 0) .

Part (ii). We present here the proof for item (ii). It follows the same steps as in Part (i):
We totally differentiate (C.27) with respect to Pt, Pt+1, and σ∗ and using (C.11) for the case
where dD∗ = 0. We obtain:

−Rm,∗
(
dP ∗

t

P ∗
t

)
+Rm,∗E

[
dP ∗

t+1

]
E
[
P ∗
t+1

] = L∗
σ∗dσ∗ − L∗

µ∗µ∗
(
dP ∗

t

P ∗
t

)
+ L∗

P ∗
t
dP ∗

t − L∗
P ∗
t+1

E
[
dP ∗

t+1

]
.

(B.30)
Collecting terms and using the same identities that we use to derive C.29, we arrive at:(

Rb
(
1− ρσ

∗
)
− L∗

µ∗µ∗
)
d logP ∗

t ≈ −L∗
σ∗dσ∗.

Therefore, we obtain:
d logP ∗

d log σ∗ ≈ −L∗
σ∗dσ∗

(1− ρσ∗)Rb − L∗
µ∗µ∗ < 0.

Then using that µ∗ = M∗/ (P ∗D∗) and that e = P/P ∗ and that P,M∗ and D∗ are constant,
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we arrive at:

d logµ∗

d log σ∗ ≈ d log e

d log σ∗ = −d logP ∗

d log σ∗ =
L∗
σ∗dσ∗

(1− ρσ∗)Rb − L∗
µ∗µ∗ > 0.

B.5 Proof of Proposition 5

We again consider that any shock x follows a log AR(1) process:

log (xt) = (1− ρx) log (xss) + ρx · log (xt−1) + Σxεxt .

We consider only shocks to dollar funding risk and the dollar funding scale and that
V ar (εxt ) = 1 for all shocks. Thus

V ar (xt) =
(Σx)2(

1− (ρx)2
) . (B.31)

Consider a univariate linear regression of∆ log e∗ against∆ logµ∗ where∆xt = xt−xt−1.
The regression coefficient is a function of two moments:

γe
∗

µ∗ =
CoV (∆ log e∗,∆ logµ∗)

V ar (∆ logµ∗)
. (B.32)

Consider an endogenous variable Yt in the model. An equilibrium will feature a function
Y (Xt) such that Yt = Y (Xt), where Xt is the exogenous state. Then, using a first-order
Taylor expansion:

log Yt ≈ log Yss +
∑
x∈X

Yx (xss) · xss
Yss

xt − xss
xss

for x ∈ X.

Therefore, we have that:

∆ log Yt ≈
∑
x∈X

Yx (xss) · xss
Yss

(
xt − xss

xss
− xt−1 − xss

xss

)
.

Near a steady state:

xt − xss
xss

− xt−1 − xss
xss

≈ ∆ log (xt) = ρx · (log (xt−1)− log (xss)) + Σxεxt .

Using this identity,

∆ log Yt ≈
∑

x∈X
Yx(xss)·xss

Yss
(ρx · (log (xt−1)− log (xss)) + Σxεxt ) .

Then, for small shocks the log-deviation from steady-state is approximately the elasticity
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near steady state.
Yx (x) · x

Yss
= ϵYx .

Hence, we have that∆ log e∗t and∆ logµ∗
t follow:

∆ log e∗t = ϵe
∗
σ∗

(
ρσ

∗ ·
(
log
(
σ∗
t−1

)
− log (σ∗

ss)
)
+Σσ∗

εσ
∗

t

)
...

+ϵe
∗
D∗

(
ρD

∗ ·
(
log
(
D∗

t−1

)
− log (D∗

ss)
)
+ΣD∗

εD
∗

t

)
. (B.33)

Likewise, for the dollar liquidity ratio:

∆ logµ∗
t = ϵµ

∗

σ∗

(
ρσ

∗ ·
(
log
(
σ∗
t−1

)
− log (σ∗

ss)
)
+Σσ∗

εσ
∗

t

)
...

+ϵµ
∗

D∗

(
ρD

∗ ·
(
log
(
D∗

t−1

)
− log (D∗

ss)
)
+ΣD∗

εD
∗

t

)
. (B.34)

From, (C.34) variance of the change in the liquidity ratio is:

V ar (∆ logµ∗) =
(
ϵµ

∗

σ∗

)2((
ρσ

∗
)2

V ar (σ∗) +
(
Σσ∗

)2)
+
(
ϵµ

∗

D∗

)2((
ρD

∗
)2

V ar (D∗) +
(
ΣD∗

)2)2

.

Substituting (C.31) into the equation above:

V ar (∆ logµ∗) =
(
ϵµ

∗

σ∗

)2(ρσ∗
)2 (

Σσ∗)2(
1− (ρσ∗)2

) +
(
Σσ∗

)2+
(
ϵµ

∗

D∗

)2(ρD∗
)2 (

ΣD∗)2(
1− (ρD∗)2

) +
(
ΣD∗

)2
=

(
ϵµ

∗

σ∗

)2 (
Σσ∗)2(

1− (ρσ∗)2
) +

(
ϵD

∗
σ∗

)2 (
ΣD∗)2(

1− (ρD∗)2
) .

Provided that the shocks to σ∗ and D∗ are orthogonal, from (C.33) and (C.34), we have
that following covariance between the change in the exchange rate and the change in the
dollar liquidity ratio:

Cov(∆ log e∗,∆ logµ∗) ≈ ϵe
∗
σ∗ · ϵµ

∗

σ∗

((
ρσ

∗
)2

V ar (σ∗) +
(
Σσ∗

)2)
+ ϵe

∗
D∗ · ϵµ

∗

D∗

((
ρD

∗
)2

V ar (D∗) + ΣD∗
)2

= ϵe
∗
σ∗ · ϵµ

∗

σ∗

((
ρσ

∗
)2

V ar (σ∗) +
(
Σσ∗

)2)
+ ϵe

∗
D∗ · ϵµ

∗

D∗

((
ρD

∗
)2

V ar (D∗) + ΣD∗
)2

= ϵe
∗
σ∗ · ϵµ

∗

σ∗

(
Σσ∗)2(

1− (ρσ∗)2
) + ϵe

∗
D∗ · ϵµ

∗

D∗

(
ΣD∗)2(

1− (ρD∗)2
) .

Thus, substituting the approximations to V ar (∆ logµ∗) andCov(∆ log e∗,∆ logµ∗) back

10



into (C.32), we obtain that the univariate regression coefficient is approximately:

βe∗
µ∗ ≈

ϵe
∗
σ∗ · ϵµ

∗

σ∗ · V ar (σ∗) + ϵe
∗
D∗ · ϵµ

∗

D∗V ar (D∗)(
ϵµ

∗

σ∗

)2
V ar (σ∗) +

(
ϵD

∗
σ∗
)2

V ar (D∗)
.

=
ϵe

∗
σ∗

ϵµ
∗

σ∗
·wσ∗

+
ϵe

∗
D∗

ϵµ
∗

D∗

wD∗
.

where:

wσ∗
=

(
ϵµ

∗

σ∗

)2 (
Σσ∗)2

1−(ρσ∗)
2(

ϵµ
∗

σ∗

)2 (Σσ∗)
2(

1−(ρσ∗)
2
) +

(
ϵµ

∗

D∗

)2 (ΣD∗)
2(

1−(ρD∗)
2
) =

(
ϵµ

∗

σ∗Σσ∗
)2 (

1−
(
ρD

∗)2)(
ϵµ

∗

σ∗Σσ∗
)2 (

1− (ρD∗)2
)
+
(
ϵµ

∗

D∗ΣD∗
)2 (

1− (ρσ∗)2
) .

and

wD∗
=

(
ϵµ

∗

D∗

)2 (
ΣD∗)2(

1−(ρD∗)
2
)

(
ϵµ

∗

σ∗

)2 (Σσ∗)
2(

1−(ρσ∗)
2
) +

(
ϵD

∗
σ∗
)2 (ΣD∗)

2(
1−(ρD∗)

2
) =

(
ϵµ

∗

σ∗Σσ∗
)2 (

1−
(
ρσ

∗)2)(
ϵµ

∗

σ∗Σσ∗
)2 (

1− (ρD∗)2
)
+
(
ϵµ

∗

D∗ΣD∗
)2 (

1− (ρσ∗)2
) .

B.6 Proof of Proposition (3)

Proof. Part i) Totally differentiating (C.10) with respect to P ∗ yields

dµ∗ = −µ∗
(
dP ∗

P ∗

)
. (B.35)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗), P ∗) (B.36)

Totally differentiating (C.36) with respect to P ∗ and (1 + im,∗), and using (C.35), we obtain

−Rm,∗
(
dP ∗

P ∗

)
− P ∗

E[P ∗(X ′)]
d (1 + im,∗) = −L∗

µ∗µ∗
(
dP ∗

P ∗

)
+ L∗

P ∗dP ∗ (B.37)

where notice that E[P ∗(X ′)] is constant because the shock is i.i.d. and Rb = 1/β.
Using L∗

P ∗ = L∗

P ∗ from Lemma C.4, Rb = Rm,∗ + L∗, and R̄m = P ∗(1 + im,∗)/E[P ∗(X ′)],
and replacing these equalities in (C.37), we obtain:

d logP ∗

d log (1 + im,∗)
= − R̄m

Rb − L∗
µ∗µ∗ ∈ (−1, 0) (B.38)
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where the sign follows from Lemma C.4. The upper bound follows because Rb > R̄m.
Notice also that the euro bond premium remains constant, and so do P , µ and L, as

demonstrated in the proof of Proposition 1. This implies that dL∗ = dDLP , dL∗
µ∗ = dDLPµ∗ .

By the law of one price, we then have d log e∗

d log(1+im,∗) =
R̄m

Rb−L∗
µµ

∗ which implies an apprecia-
tion of the dollar.

Finally, we can rewrite (C.37) as

Rm,∗ (d log e− d log (1 + im,∗)) = dL∗ = dDLP < 0 (B.39)

where the sign follows from the bounds on (C.38).
Part ii). When the shock is permanent, expected inflation is constant. From (16), it

follows that the increase in 1 + im,∗ leads to a decrease in L∗ and a reduction in DLP. Total
differentiation of (C.36) with respect to 1 + im,∗ and µ∗ yields

−R̄m,∗d log(1 + im,∗) = L∗
µµ

∗d logµ∗, (B.40)

and thus
d logµ∗

d log(1 + im,∗)
= − R̄m,∗

L∗
µ∗µ∗ > 0. (B.41)

where the sign follows from Lemma C.4. Using that d logµ∗ = −d logP ∗ when M∗ and D∗

are constant, we have from the law of one price that d log e∗

d log 1+im,∗ = R̄m,∗

−L∗
µµ

∗ . Finally

dDLP = −R̄m,∗d log(1 + im,∗)

.

Proofs of Proposition 4 (Open-Market Operations)

Preliminary Observations. We make two assumptions: first, deposits and securities
are perfect substitutes, but the demand for the sum of deposits and securities is perfectly
inelastic. Second, the supply of securities is fixed. Let SH,∗ indicate the household holding
of dollar securities and SG,∗ the central bank’s holdings of dollar securities. Thus, we have
SH,∗ + SG,∗ = S∗ where S∗ is a fixed supply of securities.

Consider a purchase of securities with reserves. The central banks’ budget constraint in
this case is modified to:

M∗
t + T ∗

t +W ∗
t+1 +

(
1 + id,∗t

)
· P ∗

t−1S
G,∗
t−1 = P ∗

t · SG,∗
t +M∗

t−1(1 + im,∗
t ) +W ∗

t (1 + iw,∗
t ).

As in earlier proofs, we avoid time subscripts. Consider a small change in the holdings of
central bank securities purchased with reserves. We obtain:

dM∗ = SG,∗dP ∗ + P ∗dSG,∗ = P ∗SG,∗dP
∗

P ∗ + P ∗SG,∗dS
G,∗

SG,∗ . (B.42)
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Assuming that the central bank has a balance sheet such that Υ of its liabilities are backed
with securities,

Υ∗ =
P ∗SG,∗

M∗ ,

we modify (C.42) to obtain:

dM∗

M∗ =
P ∗SG,∗

M

(
dP ∗

P ∗ +
dSG,∗

SG,∗

)
= Υ∗

(
dP ∗

P ∗ +
dSG,∗

SG,∗

)
.

Thus, expressed in logs, this condition is:

d logM∗ = Υ∗ (d logP ∗ + d logSG,∗) . (B.43)

The equation accounts for the fact that the growth in the money supply needed to finance
the open-market operation has consider the change in the price level.

Next, since households are inelastic regarding the some of securities and deposits, it
must be that dD∗ = −dSH,∗. Since the supply of the security is fixed −dSH,∗ = dSG,∗.
Hence,

dD∗ = dSG,∗.

Next, we express the change in the liquidity ratio in its differential form:

dµ∗ = µ∗
(
dM∗

M∗ −
(
dP ∗

P ∗ +
dD∗

D∗

))
,

= µ∗
(
dM∗

M∗ −
(
dP ∗

P ∗ + µ∗Υ∗dS
G,∗

SG,∗

))
,

where the second line applies the definitions of µ∗ and Υ∗.
In log terms, the last equation is:

d logµ∗ =
(
d logM∗ −

(
d logP ∗ +Υ∗µ∗ · d logSG,∗)) .

Substituting (C.43) we obtain:

d logµ∗ =
(
Υ∗ (d logP ∗ + d logSG,∗)− d logP ∗ −Υ∗µ∗ · d logSG,∗)

= − (1−Υ∗) d logP ∗ +Υ∗ (1− µ∗) · d logSG,∗. (B.44)

Proof. Item (i).
We now derive the main results, following the earlier proofs. Totally differentiating the

liquidity premium with respect to µ∗ and P ∗, we obtain:

R̄m,∗d logP ∗ + L∗d logP ∗ + L∗
µ∗µ∗d logµ∗ = 0. (B.45)

Substituting (C.44) and collecting terms we obtain:(
R̄m,∗ + L∗ − (1−Υ∗)LP∗

µ∗µ∗) d logP ∗ + L∗
µ∗µ∗Υ∗ (1− µ∗) · d logSG,∗ = 0. (B.46)
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Thus, we obtain:
d logP ∗

d logSG,∗ =
−LP∗

µ∗µ∗ (1− µ∗)Υ∗

Rb − (1−Υ∗)LP∗
µ∗µ∗ > 0.

Substituting this expression in (C.44) we obtain:

d logµ∗

d logSG,∗ =
RbΥ∗ (1− µ∗)

Rb − (1−Υ∗)LP∗
µ∗µ∗ > 0.

Finally, by the law of one price:

d log e = −d logP ∗ =
L∗
µ∗µ∗ (1− µ∗)Υ∗

Rb − (1−Υ∗)L∗
µ∗µ∗ < 0.

Finally, the excess-bond premium and the dollar liquidity premium is:

dL∗ = dDLP∗ = −R∗,md logP ∗ < 0.

Item (ii).
If the shock is permanent expected inflation does not change. Since nominal rates are

fixed, we have that the dollar liquidity ratio must remain constant:

d logµ∗ = 0. (B.47)

Moreover, dBP∗ = dDLP∗ = 0. From (C.44)

d logP ∗

d logSG,∗ =
Υ∗

(1−Υ∗)
(1− µ∗) > 0·

By the law of one price then:

d log e

d logSG,∗ = − d logP ∗

d logSG,∗ = − Υ∗

(1−Υ∗)
(1− µ∗) .

14



C Microfoundations - Deposit and Loan Schedules

C.1 Preliminaries

Here we provide some intermediate results that we use to prove the propositions.
Recall that the liquidity ratio is denoted by µ ≡ m/d and θ = S−/S+ where S− =

−
´
min {s, 0} dΦ (ω), S+ =

´
max {s, 0} dΦ (ω) and s = m+ ωd. Then,

θ =−

´
{s<0} s · dΦ (ω;σ)´
{s>0} s · dΦ (ω;σ)

,

=−
mΦ ({s < 0} ;σ) + d

´
{s<0} ω · dΦ (ω;σ)

m (1− Φ ({s > 0} ;σ)) + d
´
{s≥0} ω · dΦ (ω;σ)

.

Note that s < 0 occurs when ω < −µ. Therefore, we express the interbank market tightness
as:

θ =−
´ −µ
−∞ (µ+ ω) · dΦ (ω;σ)´∞
−µ (µ+ ω) · dΦ (ω;σ)

. (C.1)

With abuse of notation, define θ (µ, σ) as the function that maps µ and σ into a value of θ
(thus, in equilibrium, θ = θ (µ, σ)). We have the following Lemma:

Lemma C.1. Interbank market tightness is decreasing in the liquidity ratio. That is, dθ
dµ < 0.

Moreover, θ ∈ [0, 1].

Proof. From (C.1), using Leibniz rule, we obtain

dθ

dµ
= θ

(
Φ (−µ;σ)´ −µ

−∞ (µ+ ω) · dΦ (ω;σ)
− 1− Φ (−µ;σ)´∞

−µ (µ+ ω) · dΦ (ω;σ)

)
. (C.2)

By definition of conditional expectation:

E [µ+ ω|ω < −µ] =

ˆ −µ

−∞
(µ+ ω) · dΦ (ω;σ) /Φ (−µ;σ) ,

and
E [µ+ ω|ω > −µ] =

ˆ ∞

−µ
(µ+ ω) · dΦ (ω;σ) / (1− Φ (−µ;σ)) .

Replacing these definitions into (C.2), we obtain:

dθ

dµ
= θ ·

(
1

E [µ+ ω|ω < −µ]
− 1

E [µ+ ω|ω > −µ]

)
< 0,

where the inequality follows because E [µ+ ω|ω < −µ] < 0 and E [µ+ ω|ω > −µ] > 0.
Finally, the bounds on θ follow because limµ→∞ θ = 0 and θ = 1 if µ = 0.
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Next, we obtain the derivative of interbank market tightness with respect to σ.

Lemma C.2. Under Assumption 1, we have that ∂θ
∂σ > 0.

Proof. Passing the differential operator inside the integrals in the numerators, we have that:

∂θ

∂σ
= θ ·

( ´ −µ
−∞ (µ+ ω)ϕσdω´ −µ

−∞ (µ+ ω) · dΦ (ω;σ)
−

´∞
−µ (µ+ ω)ϕσdω´∞

−µ (µ+ ω) · dΦ (ω;σ)

)

= θ ·

(
∂

∂σ

[
log

(´ −µ
−∞ (µ+ ω) · dΦ (ω;σ)´∞
−µ (µ+ ω) · dΦ (ω;σ)

)])
.

Since the withdrawal shock is zero mean,
ˆ −µ

−∞
(µ+ ω) · dΦ (ω;σ) +

ˆ ∞

−µ
(µ+ ω) · dΦ (ω;σ) = µ.

Therefore, identity this condition into the derivative just above we obtain:

∂θ

∂σ
= log

(
µ−
´∞
−µ (µ+ ω) · dΦ (ω;σ)´∞

−µ (µ+ ω) · dΦ (ω;σ)

)
.

Therefore, ∂θ
∂σ > 0 holds if and only if:

∂

∂σ

[ˆ −µ

−∞
(µ+ ω) · dΦ (ω;σ)

]
< 0.

Using the integration by parts formula:
ˆ −µ

−∞
(µ+ ω)ϕσ (ω;σ) dω = (µ+ ω) Φσ (ω;σ) |−µ

−∞ −
ˆ −µ

−∞
Φσ (ω;σ) dω

= −
ˆ −µ

−∞
Φσ (ω;σ) dω < 0

where the last equality follows from limω→−∞ ((µ+ ω)) Φσ (ω;σ) =
∂
∂σ [limω→−∞ ((µ+ ω)) Φ (ω;σ)] =

0 and the strict inequality follows from Assumption 1. We conclude that, ∂θ
∂σ > 0.

We will also use the results from the following Lemma.

Lemma C.3. The liquidity coefficients have the following derivatives:

∂χ+

∂µ
=

∂χ+

∂θ

∂θ

∂µ
< 0 and ∂χ−

∂µ
=

∂χ−

∂θ

∂θ

∂µ
< 0, (C.3)

∂χ+

∂σ
=

∂χ+

∂θ

∂θ

∂σ
> 0 and ∂χ−

∂µ
=

∂χ−

∂θ

∂θ

∂σ
> 0, (C.4)
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∂χ̄+

∂Pt
=

χ̄+

Pt
and ∂χ̄−(θ)

∂Pt
=

χ̄−

Pt
. (C.5)

Proof. Notice first that ∂χ+

∂θ > 0 and ∂χ−

∂θ > 0 is an immediate result from their definitions in
equations (A.2). Applying Lemmas C.1 and C.2, we obtain respectively (C.3) and (C.4).

In addition, we can express (A.2) as

χ̄+ =
Pt

Pt+1
(iw − im)

(
θ̄

θ

)η (
θη θ̄1−η − θ

θ̄ − 1

)
, χ̄− =

Pt

Pt+1
(iw − im)

(
θ̄

θ

)η (
θη θ̄1−η − 1

θ̄ − 1

)
(C.6)

Equation (C.5) follows immediately.

It is useful to define L(µ, σ, P ) to be the bond liquidity premium as a function of the
liquidity ratio, the index σ and the current price level. That is,

L(µ, σ, P ) = (1− Φ(−µ, σ)) · χ̄+ (θ(µ, σ), P ) + Φ(−µ, σ) · χ̄− (θ(µ, σ), P ) (C.7)

In equilibrium L(µ, σ, P ) = Rb −Rm. We have the following result.

Lemma C.4. The liquidity bond premium is decreasing in the liquidity ratio and increasing in
volatility. That is, Lµ < 0 and Lσ > 0. In addition, LP = −L/P .

Proof. From (C.7), differentiating L with respect to µ:

Lµ =
[
(1− Φ(−µ, σ)) · χ+

θ +Φ(−µ, σ) · χ−
θ

]
−
(
χ̄− − χ̄+

)
ϕ (−µ, σ) . (C.8)

Using that ∂θ
∂µ < 0 from Lemma C.1 and that χ̄− > χ̄+, we arrive at Lµ < 0.

From (C.7), differentiating L with respect to σ yields:

LPσ =
∂θ

∂σ

[
(1− Φ(−µ, σ)) · χ+

θ +Φ(−µ, σ) · χ−
θ

]
+
(
χ̄− − χ̄+

)
Φσ (−µ, σ) . (C.9)

Using that ∂θ
∂σ > 0 from Lemma C.2 and that χ̄− > χ̄+, we conclude that Lσ > 0. Finally,

the expression for LP follows directly from differentiating L with respect to P in (C.5).

We now proceed with the proofs and use that these properties apply for both euros and
dollars.

C.2 Proof of Proposition 1

Proof. Part i). By definition, the liquidity ratio µ∗ is given by

µ∗(P ∗, D∗) =
M∗/P ∗

D∗ (C.10)
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where we made explicit the dependence of µ∗ on (P ∗, D∗). Using thatM∗ is exogenously
given, totally differentiating (C.10) yields

dµ∗ = −µ∗
(
dP ∗

P ∗ +
dD∗

D∗

)
. (C.11)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗, D∗), P ∗). (C.12)

Totally differentiating (C.12) with respect to P ∗ and D∗, and using (C.11), we obtain:

−Rm,∗
(
dP ∗

P ∗

)
= −L∗

µ∗

[
µ

(
dP ∗

P ∗ +
dD∗

D∗

)]
+ L∗

PdP
∗ (C.13)

where E[P ∗(X ′)] remains constant because the shock is i.i.d. and the loan rate is constant at
Rb = 1/β.

Using L∗
P ∗ = L∗

P ∗ from Lemma C.4, Rb = Rm,∗ +L∗ and replacing in (C.13), we arrive to

d logP ∗

d logD∗ =
L∗
µ∗µ∗

Rb − L∗
µ∗µ∗ ∈ (−1, 0) . (C.14)

The bounds follows immediately because L∗
µ < 0 as established in Lemma C.4 and from

Rb > 0.

Notice also that the euro bond premium remains constant. To see this, we can replace
µ = (M/P )/D in (15) and use (C.1) to obtain

Rb − (1 + im)
P

E[P (X ′)]
=

(
1− Φ

(
−M/P

D

))
χ̄+(θ((M/P )/D, σ))+

Φ

(
−M/P

D

)
χ̄−(θ((M/P )/D, σ)). (C.15)

From (C.15), it follows that P must be constant and thus µ and L are also constant. As a
result, dL∗ = dDLP , dL∗

µ∗ = dDLPµ∗ .

By the law of one price and using that P remains constant, we then have d log e
d logD∗ =

− L∗
µµ

∗

Rb−L∗
µµ

∗ which implies an appreciation of the dollar. Finally, we can rewrite (C.13) as
R̄m,∗ (d log e) = dL∗ = dDLP .

Part ii). When the shock is permanent, expected inflation remains constant. Moreover,
given that nominal policy rates and expected inflation are constant, we have from (16) that
L∗ is constant. Hence, DLP is constant. Furthermore, the fact that L∗ is constant, implies
that µmust also be constant. Thus, using that (C.11) and thatM∗ is constant, we have from
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the law of one price that:
d log e

d logD∗ = −d logP ∗

d logD∗ = 1.

C.3 Proof of Proposition 2

Proof. Part i). Totally differentiating (C.10) with respect to P ∗ yields

dµ∗ = −µ∗
(
dP ∗

P ∗

)
. (C.16)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗, σ∗), P ∗). (C.17)

Totally differentiating (C.17) with respect to P ∗ and σ∗ and using (C.16) yields:

−Rm,∗
(
dP ∗

P ∗

)
= −L∗

µ

[
µ

(
dP ∗

P ∗

)]
+ L∗

σ∗dσ∗ + L∗
PdP

∗ (C.18)

where we used that E[P ∗(X ′)] is constant because the shock is i.i.d. and Rb = 1/β.
Using L∗

P ∗ = L∗

P ∗ from Lemma C.4, Rb = Rm,∗ + L∗, and replacing in (C.16) , we obtain

d logP ∗

d log σ∗ = − L∗
σ∗σ

Rb − L∗
µµ

∗ < 0 (C.19)

where the sign follows from Lemma C.4. Notice also that the euro bond premium remains
constant, and so do P , µ and L, as demonstrated in the proof of Proposition 1.

By the law of one price, and using that P remains constant, we then have d log e
d logD∗ =

L∗
σσ

∗

Rb−L∗
µµ

∗ which implies an appreciation of the dollar. Finally, we can rewrite (C.18) as
R̄m,∗ (d log e) = dL∗ = dDLP .

Part ii). When the shock is permanent, expected inflation is constant. Given that nominal
policy rates are constant, L∗ and DLP are constant. Thus,

L∗
µ∗dµ∗ + L∗

σ∗dσ∗ = 0 (C.20)

and so
d logµ∗

d log σ∗ = −L∗
σ∗σ∗

L∗
µ∗µ∗ > 0 (C.21)

where the sign follows from L∗
µ∗ < 0 and L∗

σ∗ > 0 from Lemma C.4. Using that d logµ∗ =

−d logP ∗, from the law of one price, d log e∗

d log σ∗ = d logµ∗

d log σ∗ .
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C.4 Approximation to Mean Reverting Shocks

Proof. We now derive approximate analogues to propositions 1 and 2 for cases where shocks
are mean reverting. In particular, shocks follow a log AR(1) process:

log (xt) = (1− ρx) log (xss) + ρx · log (xt−1) + Σxεxt . (C.22)

We have the following result. We use xss to refer to the deterministic steady-state value of
any variable x. The proof extends the results in Propositions 1 and 2. We first show this
intermediate result. In the model, prices are a function of the aggregate state, X . Thus, an
equilibrium will feature a function P ∗ (Xt) such that P ∗

t = P ∗ (Xt). Then, near the steady
state, using a Taylor expansion of first-order with respect to the variable x. We have that:

logP ∗
t ≈ logP ∗

ss +
P ∗
x (xss)xss

P ∗
ss

xt − xss
xss

.

Thus, we have that for small deviations around the steady state:

d logP ∗
t ≈ P ∗

x (xss)xss
P ∗
ss

d log xt. (C.23)

Shifting this condition forward:

d logP ∗
t+1 ≈

P ∗
x (xss)xss

P ∗
ss

d log xt+1

Taking expectations:

E
[
d logP ∗

t+1

]
≈ P ∗

x (xss)xss
P ∗
ss

ρxd log xt. (C.24)

Dividing the left-hand side of (C.24) by (C.23),

E
[
d logP ∗

t+1

]
d logP ∗

t

= ρxd log xt. (C.25)

Next, we proof themain items of the propositions. The proof uses that for either currency:

∂χ̄+

∂Pt+1
= − χ̄+

E [Pt+1]
, and ∂χ̄−(θ)

∂Pt+1
= − χ̄−

E [Pt+1]
. (C.26)

Hence:
L∗
P ∗
t+1

= − L∗

P ∗
t+1

Recall that the dollar liquidity premium can be expressed as

Rb − (1 + im,∗)
P ∗
t

E
[
P ∗
t+1

] = L∗(µ∗(P ∗, D∗), P ∗
t , P

∗
t+1), (C.27)

where we now make explicit that L∗ depends on both Pt and Pt+1.
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Part (i). We present here the proof for item (i). Totally differentiating (C.27) with
respect to Pt, Pt+1, and D∗ and using (C.11) near the steady state, we obtain

−Rm,∗
(
dP ∗

t

P ∗
t

)
+Rm,∗E

[
dP ∗

t+1

]
E
[
P ∗
t+1

] = −L∗
µ∗µ∗

(
dP ∗

t

P ∗
t

+
dD∗

t

D∗
t

)
+ L∗

P ∗
t
dP ∗

t − L∗
P ∗
t+1

E
[
dP ∗

t+1

]
.

(C.28)
Then, collecting terms:

− (Rm,∗ + L∗)

(
1−

E
[
d logP ∗

t+1

]
d logP ∗

t

)
d logP ∗

t = −L∗
µ∗µ∗

(
dP ∗

t

P ∗
t

+
dD∗

t

D∗
t

)
. (C.29)

Substituting Rb = Rm,∗ + L∗ and (C.25), we obtain:

Rb
(
1− ρD

∗
)
d logP ∗

t ≈ L∗
µ∗µ∗

(
dP ∗

t

P ∗
t

+
dD∗

t

D∗
t

)
.

Thus, we obtain
d logP ∗

d logD∗ ≈
L∗
µ∗µ∗

(1− ρD∗)Rb − L∗
µ∗µ∗ < 0.

Then, it follows from the law of one price and the differential form of µ that

ϵeD∗ ≡ d log e

d logD∗ ≈ −
L∗
µ∗µ∗

(1− ρD∗)Rb − L∗
µ∗µ∗ ∈ (0, 1) ,

and
ϵeµ∗ ≡ d logµ

d logD∗ ≈ − (1− ρD
∗
)Rb

(1− ρD∗)Rb − L∗
µ∗µ∗ ∈ (−1, 0) .

Part (ii). We present here the proof for item (ii). It follows the same steps as in Part (i):
We totally differentiate (C.27) with respect to Pt, Pt+1, and σ∗ and using (C.11) for the case
where dD∗ = 0. We obtain:

−Rm,∗
(
dP ∗

t

P ∗
t

)
+Rm,∗E

[
dP ∗

t+1

]
E
[
P ∗
t+1

] = L∗
σ∗dσ∗ − L∗

µ∗µ∗
(
dP ∗

t

P ∗
t

)
+ L∗

P ∗
t
dP ∗

t − L∗
P ∗
t+1

E
[
dP ∗

t+1

]
.

(C.30)
Collecting terms and using the same identities that we use to derive C.29, we arrive at:(

Rb
(
1− ρσ

∗
)
− L∗

µ∗µ∗
)
d logP ∗

t ≈ −L∗
σ∗dσ∗.

Therefore, we obtain:
d logP ∗

d log σ∗ ≈ −L∗
σ∗dσ∗

(1− ρσ∗)Rb − L∗
µ∗µ∗ < 0.

Then using that µ∗ = M∗/ (P ∗D∗) and that e = P/P ∗ and that P,M∗ and D∗ are constant,
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we arrive at:

d logµ∗

d log σ∗ ≈ d log e

d log σ∗ = −d logP ∗

d log σ∗ =
L∗
σ∗dσ∗

(1− ρσ∗)Rb − L∗
µ∗µ∗ > 0.

C.5 Proof of Proposition 5

We again consider that any shock x follows a log AR(1) process:

log (xt) = (1− ρx) log (xss) + ρx · log (xt−1) + Σxεxt .

We consider only shocks to dollar funding risk and the dollar funding scale and that
V ar (εxt ) = 1 for all shocks. Thus

V ar (xt) =
(Σx)2(

1− (ρx)2
) . (C.31)

Consider a univariate linear regression of∆ log e∗ against∆ logµ∗ where∆xt = xt−xt−1.
The regression coefficient is a function of two moments:

γe
∗

µ∗ =
CoV (∆ log e∗,∆ logµ∗)

V ar (∆ logµ∗)
. (C.32)

Consider an endogenous variable Yt in the model. An equilibrium will feature a function
Y (Xt) such that Yt = Y (Xt), where Xt is the exogenous state. Then, using a first-order
Taylor expansion:

log Yt ≈ log Yss +
∑
x∈X

Yx (xss) · xss
Yss

xt − xss
xss

for x ∈ X.

Therefore, we have that:

∆ log Yt ≈
∑
x∈X

Yx (xss) · xss
Yss

(
xt − xss

xss
− xt−1 − xss

xss

)
.

Near a steady state:

xt − xss
xss

− xt−1 − xss
xss

≈ ∆ log (xt) = ρx · (log (xt−1)− log (xss)) + Σxεxt .

Using this identity,

∆ log Yt ≈
∑

x∈X
Yx(xss)·xss

Yss
(ρx · (log (xt−1)− log (xss)) + Σxεxt ) .

Then, for small shocks the log-deviation from steady-state is approximately the elasticity
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near steady state.
Yx (x) · x

Yss
= ϵYx .

Hence, we have that∆ log e∗t and∆ logµ∗
t follow:

∆ log e∗t = ϵe
∗
σ∗

(
ρσ

∗ ·
(
log
(
σ∗
t−1

)
− log (σ∗

ss)
)
+Σσ∗

εσ
∗

t

)
...

+ϵe
∗
D∗

(
ρD

∗ ·
(
log
(
D∗

t−1

)
− log (D∗

ss)
)
+ΣD∗

εD
∗

t

)
. (C.33)

Likewise, for the dollar liquidity ratio:

∆ logµ∗
t = ϵµ

∗

σ∗

(
ρσ

∗ ·
(
log
(
σ∗
t−1

)
− log (σ∗

ss)
)
+Σσ∗

εσ
∗

t

)
...

+ϵµ
∗

D∗

(
ρD

∗ ·
(
log
(
D∗

t−1

)
− log (D∗

ss)
)
+ΣD∗

εD
∗

t

)
. (C.34)

From, (C.34) variance of the change in the liquidity ratio is:

V ar (∆ logµ∗) =
(
ϵµ

∗

σ∗

)2((
ρσ

∗
)2

V ar (σ∗) +
(
Σσ∗

)2)
+
(
ϵµ

∗

D∗

)2((
ρD

∗
)2

V ar (D∗) +
(
ΣD∗

)2)2

.

Substituting (C.31) into the equation above:

V ar (∆ logµ∗) =
(
ϵµ

∗

σ∗

)2(ρσ∗
)2 (

Σσ∗)2(
1− (ρσ∗)2

) +
(
Σσ∗

)2+
(
ϵµ

∗

D∗

)2(ρD∗
)2 (

ΣD∗)2(
1− (ρD∗)2

) +
(
ΣD∗

)2
=

(
ϵµ

∗

σ∗

)2 (
Σσ∗)2(

1− (ρσ∗)2
) +

(
ϵD

∗
σ∗

)2 (
ΣD∗)2(

1− (ρD∗)2
) .

Provided that the shocks to σ∗ and D∗ are orthogonal, from (C.33) and (C.34), we have
that following covariance between the change in the exchange rate and the change in the
dollar liquidity ratio:

Cov(∆ log e∗,∆ logµ∗) ≈ ϵe
∗
σ∗ · ϵµ

∗

σ∗

((
ρσ

∗
)2

V ar (σ∗) +
(
Σσ∗

)2)
+ ϵe

∗
D∗ · ϵµ

∗

D∗

((
ρD

∗
)2

V ar (D∗) + ΣD∗
)2

= ϵe
∗
σ∗ · ϵµ

∗

σ∗

((
ρσ

∗
)2

V ar (σ∗) +
(
Σσ∗

)2)
+ ϵe

∗
D∗ · ϵµ

∗

D∗

((
ρD

∗
)2

V ar (D∗) + ΣD∗
)2

= ϵe
∗
σ∗ · ϵµ

∗

σ∗

(
Σσ∗)2(

1− (ρσ∗)2
) + ϵe

∗
D∗ · ϵµ

∗

D∗

(
ΣD∗)2(

1− (ρD∗)2
) .

Thus, substituting the approximations to V ar (∆ logµ∗) andCov(∆ log e∗,∆ logµ∗) back
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into (C.32), we obtain that the univariate regression coefficient is approximately:

βe∗
µ∗ ≈

ϵe
∗
σ∗ · ϵµ

∗

σ∗ · V ar (σ∗) + ϵe
∗
D∗ · ϵµ

∗

D∗V ar (D∗)(
ϵµ

∗

σ∗

)2
V ar (σ∗) +

(
ϵD

∗
σ∗
)2

V ar (D∗)
.

=
ϵe

∗
σ∗

ϵµ
∗

σ∗
·wσ∗

+
ϵe

∗
D∗

ϵµ
∗

D∗

wD∗
.

where:

wσ∗
=

(
ϵµ

∗

σ∗

)2 (
Σσ∗)2

1−(ρσ∗)
2(

ϵµ
∗

σ∗

)2 (Σσ∗)
2(

1−(ρσ∗)
2
) +

(
ϵµ

∗

D∗

)2 (ΣD∗)
2(

1−(ρD∗)
2
) =

(
ϵµ

∗

σ∗Σσ∗
)2 (

1−
(
ρD

∗)2)(
ϵµ

∗

σ∗Σσ∗
)2 (

1− (ρD∗)2
)
+
(
ϵµ

∗

D∗ΣD∗
)2 (

1− (ρσ∗)2
) .

and

wD∗
=

(
ϵµ

∗

D∗

)2 (
ΣD∗)2(

1−(ρD∗)
2
)

(
ϵµ

∗

σ∗

)2 (Σσ∗)
2(

1−(ρσ∗)
2
) +

(
ϵD

∗
σ∗
)2 (ΣD∗)

2(
1−(ρD∗)

2
) =

(
ϵµ

∗

σ∗Σσ∗
)2 (

1−
(
ρσ

∗)2)(
ϵµ

∗

σ∗Σσ∗
)2 (

1− (ρD∗)2
)
+
(
ϵµ

∗

D∗ΣD∗
)2 (

1− (ρσ∗)2
) .

C.6 Proof of Proposition (3)

Proof. Part i) Totally differentiating (C.10) with respect to P ∗ yields

dµ∗ = −µ∗
(
dP ∗

P ∗

)
. (C.35)

The dollar liquidity premium is

Rb − (1 + im,∗)
P ∗

E[P ∗(X ′)]
= L∗(µ∗(P ∗), P ∗) (C.36)

Totally differentiating (C.36) with respect to P ∗ and (1 + im,∗), and using (C.35), we obtain

−Rm,∗
(
dP ∗

P ∗

)
− P ∗

E[P ∗(X ′)]
d (1 + im,∗) = −L∗

µ∗µ∗
(
dP ∗

P ∗

)
+ L∗

P ∗dP ∗ (C.37)

where notice that E[P ∗(X ′)] is constant because the shock is i.i.d. and Rb = 1/β.
Using L∗

P ∗ = L∗

P ∗ from Lemma C.4, Rb = Rm,∗ + L∗, and R̄m = P ∗(1 + im,∗)/E[P ∗(X ′)],
and replacing these equalities in (C.37), we obtain:

d logP ∗

d log (1 + im,∗)
= − R̄m

Rb − L∗
µ∗µ∗ ∈ (−1, 0) (C.38)
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where the sign follows from Lemma C.4. The upper bound follows because Rb > R̄m.
Notice also that the euro bond premium remains constant, and so do P , µ and L, as

demonstrated in the proof of Proposition 1. This implies that dL∗ = dDLP , dL∗
µ∗ = dDLPµ∗ .

By the law of one price, we then have d log e∗

d log(1+im,∗) =
R̄m

Rb−L∗
µµ

∗ which implies an apprecia-
tion of the dollar.

Finally, we can rewrite (C.37) as

Rm,∗ (d log e− d log (1 + im,∗)) = dL∗ = dDLP < 0 (C.39)

where the sign follows from the bounds on (C.38).
Part ii). When the shock is permanent, expected inflation is constant. From (16), it

follows that the increase in 1 + im,∗ leads to a decrease in L∗ and a reduction in DLP. Total
differentiation of (C.36) with respect to 1 + im,∗ and µ∗ yields

−R̄m,∗d log(1 + im,∗) = L∗
µµ

∗d logµ∗, (C.40)

and thus
d logµ∗

d log(1 + im,∗)
= − R̄m,∗

L∗
µ∗µ∗ > 0. (C.41)

where the sign follows from Lemma C.4. Using that d logµ∗ = −d logP ∗ when M∗ and D∗

are constant, we have from the law of one price that d log e∗

d log 1+im,∗ = R̄m,∗

−L∗
µµ

∗ . Finally

dDLP = −R̄m,∗d log(1 + im,∗)

.

Proofs of Proposition 4 (Open-Market Operations)

Preliminary Observations. We make two assumptions: first, deposits and securities
are perfect substitutes, but the demand for the sum of deposits and securities is perfectly
inelastic. Second, the supply of securities is fixed. Let SH,∗ indicate the household holding
of dollar securities and SG,∗ the central bank’s holdings of dollar securities. Thus, we have
SH,∗ + SG,∗ = S∗ where S∗ is a fixed supply of securities.

Consider a purchase of securities with reserves. The central banks’ budget constraint in
this case is modified to:

M∗
t + T ∗

t +W ∗
t+1 +

(
1 + id,∗t

)
· P ∗

t−1S
G,∗
t−1 = P ∗

t · SG,∗
t +M∗

t−1(1 + im,∗
t ) +W ∗

t (1 + iw,∗
t ).

As in earlier proofs, we avoid time subscripts. Consider a small change in the holdings of
central bank securities purchased with reserves. We obtain:

dM∗ = SG,∗dP ∗ + P ∗dSG,∗ = P ∗SG,∗dP
∗

P ∗ + P ∗SG,∗dS
G,∗

SG,∗ . (C.42)
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Assuming that the central bank has a balance sheet such that Υ of its liabilities are backed
with securities,

Υ∗ =
P ∗SG,∗

M∗ ,

we modify (C.42) to obtain:

dM∗

M∗ =
P ∗SG,∗

M

(
dP ∗

P ∗ +
dSG,∗

SG,∗

)
= Υ∗

(
dP ∗

P ∗ +
dSG,∗

SG,∗

)
.

Thus, expressed in logs, this condition is:

d logM∗ = Υ∗ (d logP ∗ + d logSG,∗) . (C.43)

The equation accounts for the fact that the growth in the money supply needed to finance
the open-market operation has consider the change in the price level.

Next, since households are inelastic regarding the some of securities and deposits, it
must be that dD∗ = −dSH,∗. Since the supply of the security is fixed −dSH,∗ = dSG,∗.
Hence,

dD∗ = dSG,∗.

Next, we express the change in the liquidity ratio in its differential form:

dµ∗ = µ∗
(
dM∗

M∗ −
(
dP ∗

P ∗ +
dD∗

D∗

))
,

= µ∗
(
dM∗

M∗ −
(
dP ∗

P ∗ + µ∗Υ∗dS
G,∗

SG,∗

))
,

where the second line applies the definitions of µ∗ and Υ∗.
In log terms, the last equation is:

d logµ∗ =
(
d logM∗ −

(
d logP ∗ +Υ∗µ∗ · d logSG,∗)) .

Substituting (C.43) we obtain:

d logµ∗ =
(
Υ∗ (d logP ∗ + d logSG,∗)− d logP ∗ −Υ∗µ∗ · d logSG,∗)

= − (1−Υ∗) d logP ∗ +Υ∗ (1− µ∗) · d logSG,∗. (C.44)

Proof. Item (i).
We now derive the main results, following the earlier proofs. Totally differentiating the

liquidity premium with respect to µ∗ and P ∗, we obtain:

R̄m,∗d logP ∗ + L∗d logP ∗ + L∗
µ∗µ∗d logµ∗ = 0. (C.45)

Substituting (C.44) and collecting terms we obtain:(
R̄m,∗ + L∗ − (1−Υ∗)LP∗

µ∗µ∗) d logP ∗ + L∗
µ∗µ∗Υ∗ (1− µ∗) · d logSG,∗ = 0. (C.46)
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Thus, we obtain:
d logP ∗

d logSG,∗ =
−LP∗

µ∗µ∗ (1− µ∗)Υ∗

Rb − (1−Υ∗)LP∗
µ∗µ∗ > 0.

Substituting this expression in (C.44) we obtain:

d logµ∗

d logSG,∗ =
RbΥ∗ (1− µ∗)

Rb − (1−Υ∗)LP∗
µ∗µ∗ > 0.

Finally, by the law of one price:

d log e = −d logP ∗ =
L∗
µ∗µ∗ (1− µ∗)Υ∗

Rb − (1−Υ∗)L∗
µ∗µ∗ < 0.

Finally, the excess-bond premium and the dollar liquidity premium is:

dL∗ = dDLP∗ = −R∗,md logP ∗ < 0.

Item (ii).
If the shock is permanent expected inflation does not change. Since nominal rates are

fixed, we have that the dollar liquidity ratio must remain constant:

d logµ∗ = 0. (C.47)

Moreover, dBP∗ = dDLP∗ = 0. From (C.44)

d logP ∗

d logSG,∗ =
Υ∗

(1−Υ∗)
(1− µ∗) > 0·

By the law of one price then:

d log e

d logSG,∗ = − d logP ∗

d logSG,∗ = − Υ∗

(1−Υ∗)
(1− µ∗) .

Here we provide the micro-foundations for the loan demand and deposit supply sched-
ules in a deterministic version of the model. We consider a representative global household.
The household saves in dollar and euro deposits, supplies labor to an international firm,
holds shares of this firm and owns a diversified portfolio of banks.

C.7 The Non-Financial Sector

Global household problem. The household enters the periods with a portfolio of dollar
and euro deposits, denoted by {Dt, D

∗
t }, holds shares of a global firm, Σt, and shares in

a perfectly diversified portfolio of global banks, ϑt. These shares entitle the household to
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the firm’s and bank’s profits. The financial wealth available to the household (expressed in
euros) is given by:

Ptn
h
t ≡

(
1 + idt

)
Dt + Tt + et

((
1 + i∗,dt

)
D∗

t + T ∗
t

)
+ Pt

(
qt + rht

)
Σt + Pt (Qt + divt)ϑt

(C.48)
where Tt and T ∗

t represent euro and dollar central bank transfers, qt is the price of the firm
(in terms of goods), rht is the profit of the international firm, and Qt is the price of the bank
portfolio and divt the dividend payout of banks.

In addition, the household supplies ht hours that are remunerated at zt euros per hour.
The household uses its wealth to purchase deposits, to buy shares, and to consume. There
are three types of consumption goods: dollar goods, denoted by c∗t , euro goods, denoted by
ct, and a linear good, denoted by cht . The household’s budget constraint is:

etP
∗
t c

∗
t + Ptct + Ptc

h
t +Dt+1 + etD

∗
t+1 + PtqtΣt+1 + PtQtϑt+1 = Ptn

h
t + zth. (C.49)

Both dollar and euro consumption are subject to deposit-in-advance (DIA) constraints:

ct ≤
(
1 + idt

) Dt

Pt
, (C.50)

and
c∗t ≤

(
1 + idt

) Dt

Pt
. (C.51)

The period utility is

U∗ (c∗t ) + U (ct) + cht −
h1+ν
t

1 + ν
,

where U∗ and U are concave utility functions over both goods and h1+ν
t / (1 + ν) is a labor

dis-utility. To simplify the algebra of this section, we assume that U∗
c∗ (1) = Uc (1) = 1.

The household’s problem is:

V h
t (Dt, D

∗
t ,Σt, ϑt) = max

{ct,c∗t ,cht ,ht,Dt,D∗
t+1,Σt+1,ϑt+1}

U∗ (c∗t ) + U (ct) + cht −
h1+ν
t

1 + ν
. . .

+ βV h
t+1

(
Dt+1, D

∗
t+1,Σt+1, ϑt+1

)
(C.52)

subject to the budget constraint (C.49 and C.48) and the two DIA constraints (C.50-C.51).

Firm Problem. The firm produces all goods in the economy using the same production
function

yt = At+1h
α
t .

The firm’s output is divided into:

c∗t + ct + cht = yt. (C.53)
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The firm revenues come from selling goods in the dollar, euro, and linear good markets:

etP
∗
t c

∗
t + Ptct + Ptc

h
t = Ptyt.

To produce positive amounts of all goods, the firm must be indifferent between selling
in either market. Hence, the law of one price will hold in an equilibrium with positive
consumption of all goods—the Inada conditions guarantee this is the case.

To maximize profits, the firm chooses borrowed funds Bd
t+1 and labor ht. The demand

for loansemerges from a working capital constraint: ztht ≤ Bd
t+1. The firm saves in deposits

whatever borrowings it doesn’t spend in wages.
The firm’s problem is given by:

Pt+1r
h
t+1 = max

Bd
t+1≥0,ht≥0

Pt+1At+1h
α
t −

(
1 + ibt+1

)
Bd

t+1 +
(
1 + idt+1

)(
Bd

t+1 − ztht

)
= max

Bd
t+1≥0,ht≥0

Pt+1At+1h
α
t −

(
1 + ibt+1

)
ztht −

(
ibt+1 − idt+1

)(
Bd

t+1 − ztht

)
.(C.54)

Equilibrium. In the body of the paper we characterized the equilibrium in loan and
deposit markets, taking as given the loan demand and deposit supply schedules, and the
transfers rules. In addition to these financial markets, the non-financial sector features a
labor market, firm shares market, bank shares market, and the three goods markets. Next,
we derive the loan demand and deposit supply schedules and comment on how once these
asset markets clear, all other markets clear.

C.8 Derivation of Deposit Supply and Loan Demand

Step 1 - deposit demand. We clear the linear good, cht , from the household’s budget
constraint:

cht =
Ptn

h + zth−
(
etP

∗
t c

∗ + Ptc+Dt+1 + etD
∗
t+1 + Pt (rt + qt) Σt + Pt (Qt + divt)ϑt

)
Pt

= nh +
zt
Pt

ht −
(
c∗t + ct + (rt + qt) Σt + (Qt + divt)ϑt +

Dt+1

Pt
+

D∗
t+1

P ∗
t

)
. (C.55)

where the second line uses the law of one price.
Substituting (C.55) into the objective of the household’s problem (C.52) we obtain:

V h
t (Dt, D

∗
t ,Σt, ϑt) = nh

t + max
{ct,c∗t ,ht,Dt,D∗

t+1,Σt+1,ϑt+1}
U∗ (c∗t ) + U (ct)−

h1+ν
t

1 + ν
. . .

+
zt
Pt

ht −
(
c∗t + ct + (rt + qt) Σt + (Qt + divt)ϑt +

Dt+1

Pt
+

D∗
t+1

P ∗
t

)
. . .

+βV h
t+1 (Dt+1, Dt+1,Σt+1, ϑt+1)

subject to the two DIA constraints (C.50-C.51).
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We proceed to obtain the deposit supply.
Since

{
Dt+1, D

∗
t+1

}
enter symmetrically, we derive the deposit supply only for one

currency. We take the first-order condition with respect to ct and notice that if the DIA
constraint does not bind, Uc (c) = 1. In turn, if the deposit in advance constraint indeed
binds, then:

c =
(
1 + idt

) Dt

Pt
=

(
1 + idt

)
Pt/Pt−1

Dt

Pt−1
= Rd

t

Dt

Pt−1
.

Thus, we can combine both cases, with and without the binding DIA constraint, to write
down the optimal consumption rule:

c = min

{
(Uc)

−1 (1) , Rd
t ·

Dt

Pt−1

}
. (C.56)

By analogy:

c∗ = min

{
(U∗

c∗)
−1 (1) , Rd,∗

t · D∗
t

P ∗
t−1

}
.

It is convenient to treat c and c∗ directly as functions of D
Pt−1

and D∗

P ∗
t−1

in the next step.

Step 2 - deposit supply schedules. We replace the optimal euro and dollar consumption
rules into the objective. We have:

V h
t (Dt, D

∗
t ,Σt, ϑt) = nh + max

{ct,c∗t ,ht,Dt,D∗
t+1,Σt+1,ϑt+1}

U∗
(
min

{
(U∗

c∗)
−1 (1) , Rd,∗

t · D∗

P ∗
t−1

})
. . .

+ U

(
min

{
(Uc)

−1 (1) , Rd
t ·

Dt

Pt−1

})
− h1+ν

1 + ν
. . .

+ nh +
zt
Pt

h−min

{
(U∗

c∗)
−1 (1) , Rd,∗

t · D∗
t

P ∗
t−1

}
. . .

− min

{
(Uc)

−1 (1) , Rd
t ·

Dt

Pt−1

}
...

−
(
(rt + qt) Σt + (Qt + divt)ϑt +

Dt+1

Pt
+

D∗
t+1

P ∗
t

)
. . .

+ βV h
t+1 (Dt+1, Dt+1,Σt+1, ϑt+1) . (C.57)

Next, we the derive deposit demand: We take the first-order conditions with respect to
Dt+1/Pt to obtain:

1 = β
∂V h

t+1

∂ (Dt+1/Pt)
. (C.58)

Next, we derive the envelope condition. We have two cases.
Case 1: binding DIA constraint the following period. For the case where

Rd
t ·Dt/Pt−1 < 1
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we have from (C.57) that:

∂V h
t

∂ (Dt/Pt−1)
= UcR

d
t −Rd

t +Rd
t = UcR

d
t .

Case 1: non-binding DIA constraint the following period. For the case whereRd
t−1

D
Pt−1

≥
1, we have from (C.57) that

∂V h
t

∂ (Dt/Pt−1)
= Rd

t .

Thus, combining the two envelope conditions we obtain:

∂V h
t

∂ (Dt/Pt−1)
=

{
Uc

(
Rd

t ·Dt/Pt−1

)
Rd

t for Rd
t ·Dt/Pt−1 < 1

Rd
t otherwise.

(C.59)

We shift (C.59) one period forward and substitute in (C.58) in the left-hand side to
obtain:

1

β
=

{
Uc

(
Rd

t+1 ·Dt+1/Pt

)
Rd

t+1 Rd
t+1 ·Dt/Pt−1 < 1

Rd
t+1 otherwise.

In the body of the paper, using the banks’ problem, we show that Rd
t+1 < Rb = 1/β. Thus,

the only relevant portion to determine the demand condition is the one where there’s no
satiation of deposits. We hence, will only use this portion.

Wenowadopt power utility. Assume thatU = c1−γ/ (1− γ) andU∗ = (c∗)1−γ∗
/ (1− γ∗).

Then,
1

β
=
(
Rd

t+1 ·Dt+1/Pt

)−γ
Rd

t+1.

We clear D/Pt to obtain the euro deposit supply schedule:

Dt+1/Pt = β1/γ
(
Rd

t+1

) 1−γ
γ

.

By analogy, we have the dollar supply schedule:

D∗
t+1/P

∗
t = β1/γ∗

(
R∗,d

t+1

) 1−γ∗
γ∗

.

More generically, following the same states, if we introduce preference shocks to the
utility specifications, as follows:

Ut = (c/xt)
1−γ / (1− γ) and U∗

t = (c∗/x∗t )
1−γ∗

/ (1− γ∗) ,

the demand schedules generalize to:

Dt+1/Pt = xtβ
1/γ
(
Rd

t

) 1−γx

γx

.

31



By analogy, we have that

D∗
t+1/P

∗
t = x∗tβ

1/γ
(
Rd

t

) 1−γx

γx

.

We obtain this conditions following exactly the same steps.
All in all, the demand schedules are akin to those in the body of the paper, where the

reduced form coefficients are given by:

Θd
t = xtβ

1/γd and ϵd =
1

γd
− 1,

and
Θ∗,d

t = x∗tβ
1/γ∗,d and ϵ∗,d =

1

γ∗,d
− 1.

Next, we describe the labor supply schedule.

Step 3 - labor supply. The first-order condition with respect to h in the household’s
problem yields a labor supply that only depends on the real wage:

hνt = zt/Pt. (C.60)

Next, we move to the firm’s problem to obtain the labor demand.

Step 4 - labor demand. Since from the bank’s problem, it will be the case that ibt+1 > idt+1,
then the working capital constraint in (C.54) is binding, ztht = Bd

t+1. Thus, the firm’s
objective is to

max
ht≥0

Pt+1At+1h
α
t −

(
1 + ibt+1

)
ztht.

The first-order condition for labor ht yields:

Pt+1αAt+1h
α
t =

(
1 + ibt+1

)
ztht.

Dividing both sides by Pt, we obtain

Pt+1

Pt
αAt+1h

α
t =

(
1 + ibt+1

) zt
Pt

ht. (C.61)

Step 5 - loan demand. Next, we use the labor supply (C.60) and labor demand (C.61), to
solve for labor as a function of the loans rate:

Pt+1

Pt
αAt+1h

α
t =

(
1 + ibt+1

)
hν+1
t → Rb

t =
αAt+1h

α
t

hν+1
t

. (C.62)

Since the working capital constraint binds:

Bd
t+1

Pt
= ht

ztht
Pt

= hν+1
t → ht =

(
Bd

t+1

Pt

) 1
ν+1

. (C.63)
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Thus, we can combine (C.62) and (C.63) to obtain the loans demand:

Rb
t = αAt+1

(
Bd

t+1

Pt

)−1(
Bd

t+1

Pt

) α
ν+1

→
Bd

t+1

Pt
= Θt

(
Rb

t+1

)ϵb
, (C.64)

where the reduced form coefficients of the loans demand are:

Θb
t = (αAt+1)

−ϵb and ϵb =

(
ν + 1

α− (ν + 1)

)
.

Step 6 - output, firm value and bank values. We replace the loans demand (C.64) into
(C.63) to obtain the equilibrium labor as a function of the equilibrium loans rate:

ht =

(
1

αAt+1

) 1
α−(ν+1) (

Rb
t+1

) 1
α−(ν+1)

.

We replace (C.63) into the production function to obtain:

yt+1 = At+1

(
1

αAt+1

) α
α−(ν+1) (

Rb
t+1

) α
α−(ν+1) → yt+1 =

(
1

α

) α
α−(ν+1)

A
(ν+1)
ν+1−α

t+1

(
Rb

t+1

) α
α−(ν+1) ·

The profit of the international firm is given by:

rht+1 = yt+1 −Rb
t+1Bt+1 → rht+1 = A

(ν+1)
ν+1−α

t+1

(
α
− α

α−(ν+1) − α
− ν+1

α−(ν+1)

)
·
(
Rb

t+1

) α
α−(ν+1)

.

The price of the firm is given by the first-order condition with respect to Σ. In that case,
qt must satisfy:

qt = β
(
rht+1 + qt+1

)
→ qt =

∑
τ≥1

βτ
(
rht+τ

)
.

With this, we conclude that output, hours, and the firm price are decreasing in current (and
future) loans rate.

Finally, consider the price of the bank’s shares. By the same token,

Qt = β (divt +Qt+1) ,

Multiply both sides by 1/β and recall that ϑt = 1. Thus, we have:

1

β
Qt =

(
divt + β

1

β
Qt+1

)
.

By change of variables let vt ≡ 1
βQt. Therefore, the value of the firm is given by

vt = divt + βvt+1.
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Solving this condition from time zero implies that:

v0 =
∑
t≥0

βtdivt.

Thus, the bank’s objective in the body of the paper is consistent with maximizing the bank’s
value.

Remark. We priced the firms and banks so that they are held in equilibrium by households.
Thus, the shares markets clear. Note that throughout the proof we use the labor market-
clearing condition, (C.62). Hence, the labor market clears. Since in the body of the paper we
deal with clearing in the loans and deposit markets, by Walras’s law, this implies clearing in
the three goods markets.

All in all, the equilibrium in the banking block is an autonomous system. As long as
the loan and deposit markets clear, we have clearing in the non-financial sector: Once we
compute equilibria taking the schedules as exogenous in the bank’s problem, we obtain
output and household consumption from the equilibrium loan and deposit rates.

Finally, we should note that in presence of aggregate risk (inflation risk in particular),
the deposit demand schedules will feature a risk premium that we are not considering in
the derivation. We ignore this terms.
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D Additional Figures and Tables

Figure D.1: Data series
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Table D.1: Calibrated Parameters

Parameter Value Description Target

External Calibration

Mus
ss /M

eu
ss 0.6841 relative money supply normalized to exchange rate levels

Θb 1 global loan demand scale normalization

ϵb -35 loan demand elasticity Bianchi and Bigio (2021)/symmetry

ϵd,us = ϵd,eu 1 US/EU deposit demand elasticity normalization / symmetry

λus = λeu 1 US/EU interbank market matching efficiency normalization

ιus=ιeu 10 US policy corridor spread Bianchi and Bigio (2021)

ηus = ηeu 1/2 benchmark/symmetry

Steady-State Estimation of Financial Variables

Θd,∗
ss 1.0026 US deposit demand scale To match steady-state moments

Θd
ss 1.0026 EU deposit demand scale symmetry

σus
ss 76.8541 average US funding volatility steady-state moment targets

σeu
ss 21.9133 average Euro funding volatility steady-state moments targets

ξss -62.5845 average CIP and UIP wedge steady-state moments targets

Data Estimates of US and EU policy variables

E (im,us
t ) 0.9957 annualized US interest on reserves

Σ (im,us
t ) 0.0026 std annual US policy rate

ρ (im,us
t ) 0.9777 autocorrelation annual US policy rate

E (im,eu
t ) 1.0027 average annual Euro policy rate

Σ (im,eu
t ) 0.0017 std annual Euro policy rate

ρ (im,eu
t ) 0.9894 autocorrelation annual Euro policy rate

E (lnMus
t ) 6.7255 average monthly US liquid assets stock ($ Billion)

Σ (lnMus
t ) 0.0281 std monthly US liquid assets stock

ρ (lnMus
t ) 0.9894 autocorrelation monthly US liquid assets stock

E (lnMus
t ) 6.7255 average monthly US liquid assets stock ($ Billion)

Σ (lnMus
t ) 0.0281 std monthly US liquid assets stock

ρ (lnMus
t ) 0.9894 autocorrelation monthly US liquid assets stock
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Table D.2: Estimated Process

Parameter Prior Prior Mean Post. Mean Post. Interval
Σσus Inv. Gamma 0.150 0.092 0.085-0.100
Σσeu Inv. Gamma 0.150 0.111 0.103-0.120
ΣΘus Inv. Gamma 0.030 0.017 0.015-0.018
ΣΘeu Inv. Gamma 0.020 0.015 0.013-0.017
Σξ Inv. Gamma 0.000 0.001 0.000-0.001
ρσ

us Beta 0.930 0.990 0.987-0.991
ρσ

eu Beta 0.930 0.953 0.929-0.972
ρΘ

us Beta 0.985 0.991 0.989-0.992
ρΘ

eu Beta 0.980 0.989 0.987-0.991
ρξ Beta 0.980 0.980 0.979-0.982

Table D.3: Model and Data Moments

Moment Data Simulated Moment
Steady-State Targets
Mean of CIP 13.407 11.015
Mean of BP 194.605 192.575
Mean of µus 0.226 0.234
Mean of µeu 0.222 0.231
Mean of e 1.251 1.282
Untargetted Moments
Std. of CIP 42.672 121.603
Std. of BP 42.271 103.001
Std. of µus 0.133 0.036
Std. of µeu 0.025 0.042
Std. of e 0.167 0.182
AR(1) Coef. of CIP 0.801 0.947
AR(1) Coef. of BP 0.879 0.954
AR(1) Coef. of µus 0.989 0.957
AR(1) Coef. of µeu 0.986 0.956
AR(1) Coef. of e 0.963 0.952
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Figure D.2: Interbank Stress - Data and Model
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E Why are Japan and Switzerland different?

One conclusion from Section 4.4 is that the dollar exchange rate against the Japanese Yen
and, to a lesser extent, the Swiss Franc present a more tenuous relationship with the liquidity
ratio. We can exploit the model to explain what could drive pattern: from the theory, we
know that σus

t drives the correlation between any exchange rate with the dollar and the
dollar liquidity ratio. Hence, any shock that increases the demand for the Yen and or the
Swiss Franc that is correlated with σus

t will reduce the regression coefficients for these
currencies. In particular, since we do control for policy variables, the model requires that the
funding scale in Yen and Swiss Francs,Θd

t , to be correlated with σus
t to reduce the regression

coefficients. In a robustness exercise, we estimate the following process for the demand
shifters of the Yen and Swiss Franc funding:

Θd,x
t =

(
1− ρΘ,x

)
Θd,x

ss exp (Γ (σus
t /σus

ss − 1)) + ρΘ,xΘd,x
ss + εd,x, x ∈ {jp, swz} ,

using the Swiss Franc as a target. In this case, we obtain a posterior estimate for Γ of 0.72. In
this case, as indicated in Table B4, the significance of the regressions for the Yen and the
Swiss franc vanish, as they do in the data.

Table B4: Model Regression Coefficients - Correlated Funding Shocks in Japan and
Switzerland

EUR AUS CAN JPN NZ NWY SWE SWZ UK
∆(LiqRatiot) 0.121* 0.168 0.170*** 0.217 0.169* 0.156** 0.170* 0.156 0.163**
∆(πi

t − πus
t ) 0.243* 0.241 0.209* 0.228* 0.258* 0.219* 0.243* 0.218* 0.243*

LiqRatio(-1) 0.009 0.014 0.009 0.037 0.011 0.008 0.009 0.025 0.011
Constant 0.016 0.022 0.015 0.060 0.020 0.014 0.016 0.039 0.019
N 234 234 234 234 234 234 234 234 234
adj. R2 0.046 0.029 0.066 0.037 0.045 0.059 0.053 0.031 0.056

Note: t statistics in parentheses. * p<0.1, ** p<0.05, ***p<0.01
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F Computational Algorithms

F.1 Summary of Equilibrium Conditions

Steady State: equilibrium conditions. We solve the steady-state of the model where
n = 0 every period.32 Solving for steady-state equilibrium requires requires to solve for
11 variables, three interest rates,

{
R∗,d, Rd, Rb

}
, three prices {P, P ∗, e} and five quantities

{m∗,m, d, d∗, b∗}. We summarize these conditions below and show that the system .
Prices given quantities are given by:

d∗ = Θ∗,d
(
R∗,d

)ϵd∗
(F.1)

d = Θd
(
Rd
)ϵd

(F.2)

and
b∗ = Θb

(
Rb
)ϵb

. (F.3)

The two prices are given by the equilibrium in the market for real dollar reserves,

m∗ =
M∗

P ∗ . (F.4)

and by the equilibrium in the market for real euro reserves is for euro reserves:

m =
M

P
. (F.5)

In turn, the exchange rate is obtained via the law of one price:

e = P/P ∗.

Finally, we have four first-order conditions and the budget constraint to pin down the
quantities:

a) the dollar liquidity premium:

Rm,∗ + E [χ∗
m∗ ] = Rm + E [χm]

b) the bond premium:

Rb = Rm,∗ + E [χ∗
m∗ ] (F.6)

32When n > 0, Rb = 1/β so we drop one variable and the budget constraint.
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c-d) the two deposit premia

Rd,∗ + E [χ∗
d∗ ] = Rm,∗ + E [χ∗

m∗ ] (F.7)

and

Rd,∗ + E [χ∗
d∗ ] = Rm,∗ + E [χ∗

m∗ ] (F.8)

Finally, the budget constraint for n = 0 is:

b+m+m∗ = d+ d∗.

This is a system of 11 equations and 11 unknowns. Next, show how to solve the model in
ratios.

Steady State: solving the model in ratios. Recall that liquidity ratios are given by:

µ ≡ m

d
and µ∗ ≡ m∗

d∗
.

We define the ratio of real euro to dollar funding as:

υ ≡ d

d∗
.

Once we obtain {d∗, ν, µ, µ∗}, we obtain {m,m∗, d} from these three definitions.
We have shown that the interbank market tightness in euros and dollars are given by:

θ (µ) = max

{
−
´ −µ
−∞ (µ+ ω) · dΦ (ω)´∞
−µ (µ+ ω) · dΦ (ω)

, 0

}

and

θ∗ (µ∗) =

{
−
´ −µ∗

−∞ (µ∗ + ω) · dΦ∗ (ω∗)´∞
−µ∗ (µ+ ω) · dΦ∗ (ω∗)

, 0

}
.

Thus we have introduced three ratios. Notice that once we obtain {µ, µ∗} we obtain {d, d∗}.
Once we obtain υ, we have

{
e−1
}
.

Furthermore, the budget constraint written in ratios is:

b∗ = (υ (1− µ) + (1− µ∗)) d∗. (F.9)

We substitute out
{
Rb, Rd, R∗,d} and work directly with the market clearing conditions.

We replace b∗ from the budget constraint. If we substitute the ratios {µ∗, µ, υ, d∗} into the
equilibrium conditions and, thus only have one quantity variable d∗, and the rest of the
system is expressed in ratios.

Steady State: autonomous sub-system. We solve for {µ∗, µ, υ, d∗} using:
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1) Bond premium:

Θb ((υ (1− µ) + (1− µ∗)) d∗)ϵ
b

= R∗,m + E [χm (µ∗)] . (F.10)

2) The dollar liquidity premium:

Rm + E [χm (µ)] = R∗,m + E [χm (µ∗)] .

3) The euro funding premium:

Θd (υd∗)−ϵd + E [χd (µ)] = R∗,m + E [χm (µ∗)] (F.11)

4) dollar funding premium:

Θ∗,d (d∗)−ϵd
∗

+ E [χd∗ (µ
∗)] = R∗,m + E [χm∗ (µ∗)] . (F.12)

These four equations provide us with a solution to {d∗, ν, µ, µ∗}.

Steady State: Solving the rest of the model. With the solution to {µ∗, µ, υ, d∗} we
obtain {m∗,m, d} using:

m = µd, m∗ = µ∗d∗, and d = νd∗.

Then, we obtain the euro price from

P =
M

µυd∗
,

the dollar price from

P ∗ =
M∗

µ∗d∗
,

and the exchange rate from

e =
P

P ∗ .

F.2 Algorithm to obtain a Global Solution

DefineX ∈ X = {1, 2, 3, . . . , N s} to be a finite set of states. We letX follow aMarkov process
with transition matrix Q. Thus, X ′ ∼ Q (X). That is, at each period, X = {σ∗, σ, i∗,m, im,
M,M∗,Θd,Θ∗,d} are all, potentially, functions of the state X .

The algorithm proceeds as follows. We define a “greed” parameter ∆greed and a tol-
erance parameter εtol, and construct a grid for X . We conjecture a price-level functions{
p(0) (X) , p∗(0) (X)

}
which produces a price levels in both currencies as a function of the

state. As an initial guess, we use p(0) (X) = p∗ss, and p∗(0) (X) = p∗ss setting the exchange rate
to its steady state level in all periods. We proceed by iterations, setting a tolerance count tol

42



to tol > 2 · εtol.

Outerloop 1: Iteration of price functions. We iterate price functions until they converge.
Let n be the n− th step of a given iteration. Given a p(n) (X) , p∗(n) (X), we produce a
new price level functions p(n+1) (X) , p∗(n+1) (X) if tol > εtol.

Innerloop 1: Solve for real policy rates. For each X in the grid for X , we solve for{
R̄m (X) , R̄∗,m (X) , R̄w (X) , R̄∗,w (X)

}
.

Let j be the j − th step of a given iteration. Conjecture values{
R̄m

(0) (X) , R̄∗,m
(0) (X) , R̄w

(0) (X) , R̄∗,w
(0) (X)

}
We use

{
R̄m

ss, R̄
∗,m
ss , R̄w

ss, R̄
∗,w
ss

}
as an initial guess. We then update{

R̄m
(j) (X) , R̄∗,m

(j) (X) , R̄w
(j) (X) , R̄∗,w

(j) (X)
}

until we obtain convergence:

2.a Given this guess, we solve for the liquidity ratios in Dollars and Euro
{
µ, µ∗, R̄d, R̄∗,d}

as a function of the state using:

R̄d +
1

2

(
χ+ (µ)− χ− (µ)

)
= R̄∗,d +

1

2

(
χ∗,+ (µ∗)− χ∗,− (µ∗)

)
R̄m +

1

2

(
χ+ (µ) + χ− (µ)

)
= R̄∗,m +

1

2

(
χ∗,+ (µ∗) + χ∗,− (µ∗)

)
Θb ((υ (1− µ) + (1− µ∗)) d∗)ϵ

b

= R̄∗,d +
1

2

(
χ+ (µ)− χ− (µ)

)

R̄m = R̄∗,d +
1

2

(
χ+ (µ)− χ− (µ)

)
− 1

2

(
χ+ (µ) + χ− (µ)

)
.

This step yields an update for
{
Rd (X) , R∗,d (X)

}
.

2.b Given the solutions to
{
Rd (X) , R∗,d (X)

}
, we solve {d∗, υ} using:

d∗ =

[
R̄∗,d

Θ∗,d

]1/ϵd∗

υ =

[
R̄d

Θd

]1/ϵd [
R̄∗,d

Θ∗,d

]1/ϵd∗
.

This step yields an update for {d∗ (X) , υ (X)}.
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2.c Given {d∗ (X) , υ (X)} we solve for prices {p, p∗, e} using:

µυd∗ =
M

p

µ∗d∗ =
e

p
M∗

p∗ = e−1p.

2.d Finally, we update the real policy rates. For that we construct the expected inflation in
each currency:

E [π∗] =

∑
s′∈S Q (s′|s) p∗(n) (s)

p∗ (s)

and
E [π] =

∑
s′∈S Q (s′|s) p(n) (s)

p (s)
.

We then update the policy rates by:

R∗,a
(j+1) =

(1 + i∗,a)

(1 + π∗)
for a ∈ {m,w}

and
Ra

(j+1) =
(1 + ia)

(1 + π)
for a ∈ {m,w} .

2.e Repeat steps 2.a-2.d, unless{
Rm

(j) (X) , R∗,m
(j) (X) , Rw

(j) (X) , R∗,w
(j) (X)

}
is close to {

Rm
(j+1) (X) , R∗,m

(j+1) (X) , Rw
(j+1) (X) , R∗,w

(j+1) (X)
}
.

If the real policy rates have converged, update prices according to

p∗(n+1) (X) = ∆greedp∗ +
(
1−∆greed

)
p∗(n) (X)

and
p(n+1) (X) = ∆greedp+

(
1−∆greed

)
p∗(n) (X)

and proceed back to the outer-loop.
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G Additional Tables: Empirical Analysis

Table G1: Exchange Rates and Liquidity Ratio and VIX: Feb. 2001–July 2021
Euro AU CAN JPN NZ NWY SWE CH U.K.

∆(Liqt) 0.198*** 0.178*** 0.082* -0.119** 0.225*** 0.137** 0.175*** 0.126** 0.141***
(4.283) (3.250) (1.935) (-2.528) (3.762) (2.429) (3.206) (2.426) (3.044)

πt − π∗
t -0.668*** -0.386** -0.278 -0.007 -0.523** -0.051 -0.407** -0.517** -0.271

(-3.354) (-2.008) (-1.491) (-0.050) (-2.561) (-0.382) (-2.315) (-2.411) (-1.622)
∆VIXt 0.124*** 0.344*** 0.220*** -0.077** 0.285*** 0.239*** 0.189*** 0.064* 0.099***

(3.841) (8.995) (7.399) (-2.350) (6.792) (6.116) (4.991) (1.784) (3.163)
Liqt−1 0.009** 0.006 0.007* 0.002 0.005 0.010* 0.007 0.005 0.008

(2.059) (1.204) (1.770) (0.306) (0.995) (1.877) (1.330) (1.047) (1.562)
Constant -0.010*** -0.004 -0.006* -0.001 -0.006 -0.007* -0.008** -0.015*** -0.005

(-3.056) (-1.104) (-1.963) (-0.193) (-1.445) (-1.697) (-2.052) (-2.833) (-1.471)
N 246 246 246 246 246 246 246 246 246
adj. R2 0.16 0.30 0.21 0.04 0.23 0.16 0.14 0.04 0.08

Notes: VIX is taken from the VIXCLS series on FRED. t statistics in parentheses. p<0.1, ** p<0.05, *** p<0.01
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Table G2: Exchange Rates and Liquidity Ratio Instrumental Variable Regression:
Feb. 2001–July 2021

Euro AU CAN JPN NZ NWY SWE CH U.K.

∆(Liqt) 0.370*** 0.553*** 0.441*** -0.247** 0.440*** 0.394** 0.373*** -0.006 0.463***

(2.997) (3.573) (3.702) (-2.122) (2.843) (2.587) (2.634) (-0.042) (3.189)

πt − π∗
t -0.834*** -0.733*** -0.534** 0.051 -0.662*** -0.194 -0.519*** -0.371 -0.634***

(-3.567) (-3.018) (-2.364) (0.359) (-2.884) (-1.208) (-2.631) (-1.451) (-2.642)

Liqt−1 0.011** 0.012* 0.014*** -0.001 0.008 0.016** 0.010* 0.004 0.017**

(2.380) (2.038) (2.706) (-0.161) (1.423) (2.418) (1.779) (0.703) (2.553)

∆VIXt 0.104*** 0.296*** 0.183*** -0.066* 0.260*** 0.212*** 0.168*** 0.077** 0.064*

(2.901) (6.584) (5.106) (-1.885) (5.665) (4.883) (4.092) (1.970) (1.701)

Constant -0.012*** -0.008* -0.012*** 0.002 -0.008* -0.011** -0.012** -0.011* -0.012**

(-3.329) (-1.838) (-2.988) (0.317) (-1.880) (-2.288) (-2.514) (-1.723) (-2.513)

N 245 245 245 245 245 245 245 245 245

Notes: FFundsSpread is the monthly average of the intra-daily Fed Funds spread: the difference between the
high and low Fed funds rate transacted on each day. StDev(XRate), lagged FFundsSpread and lagged Δ(Liq)
instrument for ∆(Liq)., StDev(Inf). t statistics in parentheses, * p<0.1, ** p<0.05, *** p<0.01

Table G3: Exchange Rates and Alternative Measure of Liquidity Ratio
Euro AU CAN JPN NZ NWY SWE CH UK

∆(Liq2t) 0.099*** 0.117*** 0.069*** -0.012 0.125*** 0.101*** 0.088*** 0.079*** 0.103***
(3.774) (3.298) (2.65) (-0.451) (3.416) (3.081) (2.791) (2.765) (4.026)

πt − π∗
t -0.836*** -0.612*** -0.393* -0.082 -0.667*** -0.125 -0.441** -0.635*** -0.334**

(-3.661) (-2.635) (-1.823) (-0.541) (-2.939) (-0.839) (-2.261) (-2.716) (-1.998)
Liq2t−1 0.004 0.003 0.005* 0.004 0.002 0.006* 0.004 0.003 0.003

(1.357) (0.989) (1.724) (1.220) (0.476) (1.720) (1.355) (1.105) (1.207)
Constant -0.005*** 0.000 -0.002 -0.002 -0.002 -0.001 -0.005* -0.014*** -0.001

(-2.625) (0.079) (-1.270) (-0.661) (-1.005) (-0.573) (-1.794) (-3.172) (-0.352)
N 235 235 235 235 235 235 235 235 235
adj. R2 0.09 0.05 0.03 -0.00 0.06 0.04 0.04 0.04 0.06

Note: The alternative measure of the liquidity ratio includes as liabilities ”net financing” of broker-dealer banks,
as defined by Adrian and Fleming (2005). t statistics in parentheses.
* p<0.1, ** p<0.05, *** p<0.01
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Table G4: Exchange Rates and Alternative Measure of Liquidity Ratio with VIX
Euro AU CAN JPN NZ NWY SWE CH UK

∆(Liq2t) 0.090*** 0.092*** 0.058** -0.007 0.106*** 0.088*** 0.078*** 0.074*** 0.0965***
(3.538) (3.064) (2.503) (-0.278) (3.194) (2.874) (2.612) (2.606) (3.800)

πt − π∗
t -0.649*** -0.332* -0.269 -0.112 -0.452** -0.051 -0.380** -0.568** -0.261

(-2.881) (-1.164) (-1.389) (-0.743) (-2.181) (-0.364) (-2.062) (-2.428) (-1.583)
∆VIXt 0.145*** 0.382*** 0.240*** -0.092** 0.324*** 0.246*** 0.218*** 0.081** 0.109***

(4.179) (9.527) (7.674) (-2.586) (7.281) (6.071) (5.443) (2.157) (3.300)
Liq2t−1 0.004 0.005 0.005** 0.004 0.003 0.006* 0.005 0.003 0.003

(1.613) (1.539) (1.998) (1.265) (0.911) (1.856) (1.631) (1.194) (1.187)
Constant -0.004** -0.001 -0.002 -0.003 -0.003 -0.001 -0.004* -0.013*** -0.001

(-2.347) (-0.464) (-1.258) (-0.830) (-1.183) (-0.592) (-1.736) (-2.923) (-0.322)
N 235 235 235 235 235 235 235 235 235
adj. R2 0.15 0.32 0.23 0.02 0.23 0.16 0.15 0.06 0.10

t statistics in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table G5: Exchange Rates and Alternative Measure of Liquidity Ratio Instrumental
Variable Regression: Feb. 2001–July 2021

Euro AU CAN JPN NZ NWY SWE CH UK

∆(Liq2t) 0.370*** 0.511*** 0.365*** -0.242* 0.389** 0.458*** 0.365** 0.017 0.545***

(2.764) (2.904) (3.058) (-1.882) (2.440) (2.625) (2.543) (0.133) (2.697)

πt − π∗
t -1.103*** -0.936*** -0.374 0.109 -0.736** -0.331 -0.542** -0.474 -1.038**

(-3.106) (-2.559) (-1.436) (0.521) (-2.585) (-1.502) (-2.314) (-1.575) (-2.419)

Liq2t−1 0.005 0.007 0.007** 0.000 0.004 0.011** 0.007* 0.003 0.010*

(1.600) (1.630) (2.008) (0.076) (1.021) (2.237) (1.779) (1.074) (1.950)

∆VIXt 0.113** 0.328*** 0.213*** -0.072* 0.292*** 0.211*** 0.192*** 0.086** 0.056

(2.477) (5.609) (4.978) (-1.676) (5.423) (3.845) (3.905) (2.136) (1.007)

Constant -0.007*** -0.001 -0.004* 0.003 -0.004 -0.003 -0.007** -0.011* -0.003

(-2.681) (-0.289) (-1.674) (0.509) (-1.478) (-1.213) (-2.173) (-1.914) (-1.226)

N 234 234 234 234 234 234 234 234 234

Notes: StDev(Inf), StDev(XRate), lagged FFundsSpread and laggedΔ(Liq2) instrument for∆(Liq2). t statistics
in parentheses, * p<0.1, ** p<0.05, *** p<0.01.
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Table G6: Exchange Rates and Alternative Measure of Liquidity Ratio (M2-
Currency)

Euro AU CAN JPN NZ NWY SWE CH UK
∆(Liq3t) 0.084 0.114 0.099 -0.243*** 0.214** 0.086 0.074 0.016 0.134**

(1.285) (1.318) (1.574) (-3.899) (2.333) (1.061) (0.949) (0.232) (2.116)
πt − π∗

t -0.607*** -0.520** -0.363* -0.023 -0.699*** -0.067 -0.360* -0.417* -0.217
(-2.901) (-2.315) (-1.792) (-0.180) (-3.007) (-0.467) (-1.933) (-1.938) (-1.385)

Liq3t−1 0.006 0.005 0.008 0.006 0.003 0.010 0.006 0.004 0.005
(1.170) (0.789) (1.503) (1.131) (0.424) (1.565) (1.080) (0.803) (0.930)

Constant 0.003 0.006 0.007 0.008 0.001 0.012 0.004 -0.005 0.005
(0.474) (0.777) (1.157) (1.285) (0.111) (1.482) (0.553) (-0.573) (0.829)

N 246 246 246 246 246 246 246 246 246
adj. R2 0.03 0.02 0.01 0.06 0.03 0.00 0.01 0.01 0.01

Note: The alternative measure of the liquidity ratio includes as liabilities M2 less currency in circulation. t
statistics in parentheses. * p<0.1, ** p<0.05, *** p<0.01

TableG7: ExchangeRates andAlternativeMeasure of Liquidity Ratio (M2-Currency)
with VIX

Euro AU CAN JPN NZ NWY SWE CH UK
∆(Liq3t) 0.085 0.117 0.108* -0.247*** 0.209** 0.095 0.083 0.018 0.135**

(1.352) (1.580) (1.906) (-4.018) (2.519) (1.262) (1.120) (0.251) (2.192)
πt − π∗

t -0.473** -0.287 -0.258 -0.037 -0.507** -0.015 -0.320* -0.374* -0.172
(-2.320) (-1.484) (-1.415) (-0.299) (-2.390) (-0.115) (-1.816) (-1.744) (-1.125)

∆VIXt 0.147*** 0.365*** 0.229*** -0.091*** 0.309*** 0.253*** 0.208*** 0.078** 0.115***
(4.471) (9.539) (7.795) (-2.863) (7.344) (6.511) (5.441) (2.177) (3.677)

Liq3t−1 0.007 0.008 0.009* 0.006 0.006 0.011* 0.008 0.005 0.005
(1.501) (1.429) (1.884) (1.088) (0.890) (1.858) (1.402) (0.930) (1.020)

cons 0.005 0.009 0.009 0.007 0.004 0.014* 0.006 -0.003 0.006
(0.863) (1.294) (1.544) (1.187) (0.537) (1.770) (0.878) (-0.380) (0.926)

N 246 246 246 246 246 246 246 246 246
adj. R2 0.10 0.28 0.21 0.08 0.21 0.15 0.11 0.02 0.06

Note: t statistics in parentheses. * p<0.1, ** p<0.05, *** p<0.01

48



Table G8: Relationship of Exchange Rates and Alternative Measure of Banking
Liquidity Ratio (M2-Currency) Instrumental Variable Regression: Feb. 2001–July
2021

Euro AU CAN JPN NZ NWY SWE CH UK
∆(Liq3t) 0.180 0.367** 0.272** -0.220* 0.546*** 0.264* 0.338** -0.080 0.361***

(1.522) (2.566) (2.572) (-1.950) (3.242) (1.868) (2.424) (-0.608) (2.929)
πt − π∗

t -0.515** -0.450** -0.313* -0.043 -0.737*** -0.063 -0.388** -0.308 -0.307*
(-2.443) (-2.149) (-1.666) (-0.336) (-3.058) (-0.452) (-2.101) (-1.361) (-1.796)

Liq3t−1 0.008 0.010* 0.010** 0.006 0.007 0.013** 0.009 0.005 0.008
(1.556) (1.658) (2.117) (1.128) (1.047) (2.046) (1.615) (0.908) (1.463)

∆VIXt 0.147*** 0.360*** 0.229*** -0.092*** 0.305*** 0.254*** 0.208*** 0.077** 0.114***
(4.419) (9.164) (7.621) (-2.860) (6.984) (6.425) (5.296) (2.118) (3.544)

Constant 0.005 0.011 0.009* 0.007 0.004 0.015* 0.007 -0.002 0.008
(0.837) (1.450) (1.658) (1.211) (0.545) (1.892) (0.892) (-0.202) (1.228)

N 245 245 245 245 245 245 245 245 245

Notes: StDev(Inf), StDev(XRate), lagged FFundsSpread and lagged Δ(Liq3) instrument for ∆(Liq3). t statistics
in parentheses, * p<0.1, ** p<0.05, *** p<0.01

Table G9: First Stage Regressions for Each Measure of the Liquidity Ratio (∆Liq)
Constant St.Dev Inf St.Dev Dep ∆(Liq(-1)t) ∆(FFSpread(-1)t)

∆(Liq1t) -0.027*** 0.39 1.396*** 0.130** 0.035***

(2.88) (0.45) (25.14) (2.14) (2.64)

∆(Liq2t) -0.035*** 0.132 2.001*** -0.002 0.006

(-1.86) (0.08) (4.11) (-0.03) (0.23)

∆(Liq3t) 0.012* 0.299 0.605*** 0.459*** 0.038***

(-1.94) (0.57) (3.62) (8.13) (4.16)

Note: t statistics in parentheses. * p<0.1, ** p<0.05, *** p<0.01
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Table G10: Correlation: Measures of Liquidity Ratio (Liq) and Convenience Yield
(ConvY d) on 1-year U.S. Treasury notes in Dynamic Regression

Const. ∆(Conv Ydt) ∆(Conv Yd(-1)t) ∆(Conv Yd(-2)t) ∆(Liq(-1)t) ∆(Liq(-2)t)

∆(Liq1t) 0.004 4.391* 9.370*** 1.541 0.162** 0.170**

(1.44) (1.72) (3.62) (0.63) (2.19) (2.31)

∆(Liq2t) 0.005 3.649 9.658* 6.298 0.022 0.057

(1.03) (0.74) (1.96) (1.29) (0.31) (0.79)

∆(Liq3t) 0.002 -1.210 6.674*** 5.000*** 0.478*** -0.003

(1.47) (-0.75) (4.07) (2.99) (6.80) (-0.04)

∆(Liq1t) 0.004 - 8.708*** 1.107 0.119* 0.163**

(1.56) (3.40) (0.45) (1.68) (2.21)

∆(Liq2t) 0.005 - 9.132* 5.772 0.012 0.055

(1.06) (1.88) (1.20) (0.17) (0.78)

∆(Liq3t) 0.002 - 6.916*** 5.233*** 0.483*** 0.006

(1.42) (4.34) (6.96) (3.18) (0.08)

Note: t statistics in parentheses. * p<0.1, ** p<0.05, *** p<0.01

Table G11: Relationship of Exchange Rates and Liquidity Ratio Feb. 2001 – April
2012

Euro AU CAN JPN NZ NWY SWE CH UK
∆(Liqt) 0.240*** 0.310*** 0.143** -0.144** 0.338*** 0.203*** 0.217*** 0.198*** 0.152**

(3.781) (3.816) (2.380) (-2.371) (4.106) (2.664) (2.807) (2.771) (2.587)
πt − π∗

t -1.095*** -0.725** -0.601** -0.261 -0.615** -0.199 -0.522** -0.713** -0.225
(-3.565) (-2.540) (-2.372) (-1.133) (-2.255) (-1.093) (-2.125) (-2.454) (-1.041)

Liqt−1 0.008 -0.009 -0.001 -0.002 -0.003 0.001 -0.002 -0.003 0.003
(1.181) (-1.054) (-0.077) (-0.300) (-0.309) (0.102) (-0.282) (-0.381) (0.360)

Constant -0.011*** -0.001 -0.006 -0.008 -0.005 -0.006 -0.008 -0.017*** -0.004
(-2.811) (-0.109) (-1.633) (-1.007) (-1.009) (-1.399) (-1.565) (-2.636) (-0.890)

N 135 135 135 135 135 135 135 135 135
adj. R2 0.13 0.11 0.05 0.04 0.12 0.03 0.05 0.06 0.03

Note: . t statistics in parentheses. * p<0.1, ** p<0.05, *** p<0.01
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Table G12: Exchange Rates and Liquidity Ratio with VIX Feb. 2001 – April 2012
Euro AU CAN JPN NZ NWY SWE CH UK

∆(Liqt) 0.182*** 0.176** 0.061 -0.114* 0.248*** 0.134* 0.136* 0.169** 0.137**
(2.856) (2.467) (1.102) (-1.831) (3.127) (1.767) (1.827) (2.286) (2.250)

πt − π∗
t -0.846*** -0.391 -0.362 -0.342 -0.443* -0.109 -0.423* -0.632** -0.193

(-2.765) (-1.586) (-1.563) (-1.464) (-1.724) (-0.614) (-1.831) (-2.146) (-0.879)
∆VIXt 0.175*** 0.430*** 0.266*** -0.089* 0.301*** 0.212*** 0.267*** 0.087 0.044

(3.284) (7.211) (5.700) (-1.730) (4.551) (3.493) (4.409) (1.453) (0.896)
Liqt−1 0.009 -0.004 0.001 -0.003 -0.000 0.003 0.001 -0.002 0.003

(1.422) (-0.541) (0.243) (-0.406) (-0.047) (0.415) (0.149) (-0.216) (0.348)
Constant -0.010*** -0.003 -0.005 -0.010 -0.005 -0.006 -0.008 -0.016** -0.003

(-2.694) (-0.679) (-1.554) (-1.283) (-1.191) (-1.395) (-1.608) (-2.444) (-0.827)
N 135 135 135 135 135 135 135 135 135
adj. R2 0.19 0.36 0.24 0.06 0.23 0.11 0.17 0.06 0.03

Note: t statistics in parentheses. * p<0.1, ** p<0.05, *** p<0.01

Table G13: Exchange Rates and Liquidity Ratio Instrumental Variable Regression:
StDev(Inf), StDev(XRate), lagged FFundsSpread and laggedΔ(Liq) instrument for
∆(Liq) Feb. 2001 – April 2012

Euro AU CAN JPN NZ NWY SWE CH UK
∆(Liqt) 0.324** 0.579*** 0.418*** -0.109 0.475*** 0.495** 0.397** 0.142 0.498***

(2.183) (3.209) (2.977) (-0.736) (2.647) (2.442) (2.169) (0.803) (2.889)
πt − π∗

t -1.019*** -0.767** -0.662** -0.343 -0.586** -0.391 -0.634** -0.591* -0.643**
(-2.887) (-2.472) (-2.314) (-1.254) (-2.064) (-1.622) (-2.269) (-1.677) (-2.019)

Liqt−1 0.010 -0.002 0.004 -0.002 0.002 0.006 0.002 -0.001 0.013
(1.497) (-0.190) (0.613) (-0.355) (0.188) (0.664) (0.306) (-0.170) (1.329)

∆VIXt 0.142** 0.331*** 0.186*** -0.092 0.250*** 0.133* 0.212*** 0.091 -0.036
(2.246) (4.333) (3.068) (-1.526) (3.257) (1.715) (2.945) (1.298) (-0.557)

Constant -0.012*** -0.006 -0.011** -0.010 -0.008 -0.012** -0.012** -0.015* -0.011**
(-2.816) (-1.246) (-2.438) (-1.078) (-1.596) (-2.106) (-2.136) (-1.889) (-1.983)

N 134 134 134 134 134 134 134 134 134

Note: t statistics in parentheses. * p<0.1, ** p<0.05, *** p<0.01
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Table G14: Relationship of Exchange Rates and Liquidity Ratio May 2012 – July 2021
Euro AU CAN JPN NZ NWY SWE CH UK

∆(Liqt) 0.208*** 0.172* 0.126 -0.051 0.181* 0.218** 0.252*** 0.043 0.184**
(2.927) (1.735) (1.657) (-0.624) (1.663) (2.077) (2.894) (0.583) (2.290)

πt − π∗
t -0.451 -0.399 0.181 0.074 -0.798 -0.169 -0.273 -0.408 -0.660*

(-1.551) (-0.847) (0.445) (0.320) (-1.365) (-0.623) (-0.940) (-1.132) (-1.802)
Liqt−1 0.017 0.019 0.012 0.002 0.004 0.015 0.006 0.019 0.033

(0.976) (0.670) (0.614) (0.061) (0.187) (0.607) (0.328) (1.031) (1.507)
Constant -0.016 -0.013 -0.008 0.002 -0.004 -0.008 -0.004 -0.024 -0.027

(-0.973) (-0.498) (-0.439) (0.079) (-0.190) (-0.357) (-0.248) (-1.165) (-1.386)
N 111 111 111 111 111 111 111 111 111
adj. R2 0.06 0.00 0.01 -0.02 0.01 0.02 0.06 -0.01 0.04

Note: t statistics in parentheses. * p<0.1, ** p<0.05, *** p<0.01

Table G15: Exchange Rates and Liquidity Ratio with VIX May 2012 – July 2021
Euro AU CAN JPN NZ NWY SWE CH UK

∆(Liqt) 0.206*** 0.159* 0.125* -0.050 0.174* 0.212** 0.251*** 0.043 0.181**
(2.940) (1.807) (1.790) (-0.621) (1.770) (2.247) (2.958) (0.572) (2.389)

πt − π∗
t -0.408 -0.090 0.103 0.072 -0.402 -0.057 -0.235 -0.393 -0.607*

(-1.419) (-0.214) (0.274) (0.314) (-0.752) (-0.233) (-0.829) (-1.086) (-1.755)
∆VIXt 0.074** 0.255*** 0.170*** -0.082* 0.265*** 0.257*** 0.116** 0.026 0.152***

(1.992) (5.472) (4.565) (-1.946) (4.996) (5.100) (2.557) (0.653) (3.794)
Liqt−1 0.016 0.008 0.015 0.001 0.006 0.012 0.007 0.019 0.032

(0.950) (0.321) (0.836) (0.051) (0.289) (0.541) (0.358) (1.015) (1.548)
Constant -0.015 -0.003 -0.011 0.002 -0.005 -0.006 -0.004 -0.024 -0.026

(-0.933) (-0.148) (-0.649) (0.090) (-0.233) (-0.293) (-0.259) (-1.138) (-1.422)
N 111 111 111 111 111 111 111 111 111
adj. R2 0.09 0.22 0.17 0.00 0.19 0.20 0.10 -0.02 0.15

Note: t statistics in parentheses. * p<0.1, ** p<0.05, *** p<0.01
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Table G16: Exchange Rates and Liquidity Ratio Instrumental Variable Regression:
StDev(Inf), StDev(XRate), lagged FFundsSpread, lagged Δ(Liq), and
∆(USIndProd) instrument for ∆(Liq)May 2012 – July 2021

Euro AU CAN JPN NZ NWY SWE CH UK
∆(Liqt) 0.380* 0.191 0.361 -0.236 0.461 0.687** 0.257 0.030 0.360

(1.745) (0.755) (1.648) (-0.945) (1.498) (2.185) (1.027) (0.139) (1.546)
πt − π∗

t -0.489 -0.116 0.046 0.146 -0.495 -0.145 -0.234 -0.385 -0.713*
(-1.574) (-0.251) (0.115) (0.580) (-0.878) (-0.520) (-0.825) (-0.998) (-1.887)

Liqt−1 0.016 0.009 0.013 -0.002 0.002 0.009 0.007 0.019 0.033
(0.893) (0.338) (0.684) (-0.081) (0.080) (0.342) (0.346) (1.013) (1.559)

∆VIXt 0.073* 0.255*** 0.169*** -0.082* 0.262*** 0.254*** 0.116** 0.026 0.151***
(1.902) (5.444) (4.328) (-1.884) (4.764) (4.527) (2.556) (0.655) (3.672)

Constant -0.014 -0.004 -0.008 0.005 0.000 0.000 -0.004 -0.024 -0.027
(-0.859) (-0.160) (-0.448) (0.205) (0.021) (0.001) (-0.244) (-1.128) (-1.396)

N 111 111 111 111 111 111 111 111 111

Note: t statistics in parentheses. * p<0.1, ** p<0.05, *** p<0.01

Table G17: Relationship of Exchange Rates and Liquidity Ratio in Foreign Related
Banks

Euro AU CAN JPN NZ NWY SWE CH U.K.

∆(LiqRatFRBt) 0.139*** 0.200*** 0.161*** -0.137*** 0.184*** 0.151*** 0.122*** 0.039 0.171***

(3.188) (3.622) (3.505) (2.764) (2.767) (2.485) (2.016) (0.734) (3.026)

πt − π∗
t -0.566*** -0.450*** -0.377* -0.098 -0.577*** -0.049 -0.399** -0.377*** -0.304*

(-2.519) (-2.053) (-1.898) (-0.737) (-2.455) (-0.347) (-2.079) (-1.735) (-1.733)

LiqRatFRBt−1 0.005* 0.006* 0.006* 0.004 0.003 0.007* 0.005* 0.003 0.004

(1.782) (1.902) (2.207) (1.366) (0.881) (2.177) (1.792) (1.167) (1.431)

∆(VIXt) 0.127*** 0.311*** 0.206*** -0.069** 0.279*** 2.33*** 0.190*** 0.072* 0.088**

(3.406) (7.598) (6.430) (-1.973) (5.982) (5.507) (4.593) (1.936) (2.501)

Constant 0.001 0.006 0.005 0.003 0.001 0.007 0.002 -0.006 0.004

(0.333) (1.452) (1.583) (0.860) (0.156) (1.771) (0.453) (-1.039) (1.017)

N 245 245 245 245 245 245 245 245 245

Note: The liquidity ratio is for foreign-related bank subsidiaries and branches located in the U.S. Liquid
assets are the sum of cash assets (CASFRIW027SBOG from FRED) and Treasury and agency securities
(TASFRIW027SBOG). Short-term liabilities are the sum of deposits (DPSFRIW027SBOG) and borrowings
(H8B3094NFRD). t statistics in parentheses. * p<0.1, ** p<0.05, *** p<0.01
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