Bank Runs, Fragility, and Credit Easing

Manuel Amador ¹ Javier Bianchi²

¹Federal Reserve Bank of Minneapolis University of Minnesota
²Federal Reserve Bank of Minneapolis

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

- Financial crises typically involve bank runs
- Short-term debt can make a bank vulnerable to a self-fulfilling run
- Empirically, runs more likely with weak aggregate fundamentals
 - General equilibrium feedbacks potentially important

- \star Macroeconomic model essential to understand feedbacks
 - **Q:** What are the implications for government policy?

A Macroeconomic Model of Bank Runs

- Limited commitment and endogenous default
 - Defaults triggered by fundamentals or runs
- Dynamic portfolio and equity payout decisions
- Asset prices endogenously determined in equilibrium
 - Fragility linked to individual and aggregate fundamentals
- Self-fulfilling runs occur despite assets being liquid
- Normative analysis of credit easing policies

- Desirability of credit easing depends on source of the crisis
 - Bad if driven by fundamentals. Good if driven by runs

• Desirability of credit easing depends on source of the crisis

• Bad if driven by fundamentals. Good if driven by runs

• Marginal banks are net buyers during fundamental crises, but net sellers during run driven crises

 \Rightarrow Increases in asset prices hurt repaying banks in a fundamental driven crisis, but benefit them in the case of runs

Literature on bank runs: (Diamond and Dybvig 1983; Allen and Gale 2000; Ennis and Keister 2009; Uhlig 2010; Gertler and Kiyotaki 2015; Gertler, Kiyotaki and Prestipino 2020; etc).

- We embed runs in dynamic macro model
 - Key differences with bank panics in Gertler-Kiyotaki:
 - · Coordination problem between depositors of individual banks
 - Fragility linked to short-term debt maturity
- Runs occur despite perfectly liquid assets
- Credit easing desirable if crisis driven by runs

Also build on literature on limited commitment and sovereign default: (Thomas and Worrall 1994; Abuquerque and Hopenhayn 2004; Kehoe and Levine 1993, Alvarez and Jermann 2000; Cole-Kehoe 2000)

- Discrete time, infinite horizon, no aggregate risk
- Technology
 - Production linear in capital
 - Capital in fixed supply \overline{K}
- Continuum of banks, preferences $\mathbb{E} \sum_{t=0}^{\infty} \beta^t \log(c_t)$.
- Continuum of creditors, linear utility and discount rate R
- Banks are ex-ante identical
 - Start at t = 0 with portfolio $(b_0 = B_0, k_0 = \overline{K})$
 - At t = 0, idiosyncratic shock and possibility of runs

- 1. Bank problem in partial equilibrium
- 2. General equilibrium: market clearing for capital
- 3. Credit policy analysis: government purchases of capital

• If repay at time t:

$$c_t = (z_t + p_t)k_t - Rb_t + q_t(b_{t+1}, k_{t+1})b_{t+1} - p_tk_{t+1}.$$

- q_t price of deposits p_t price of capital (liquid market)
 - Productivity
 - At t = 0, iid shock productivity z_0 , drawn cdf F
 - $z_t = z$ for all $t \ge 1$

• If repay at time t:

$$c_t = (z_t + p_t)k_t - Rb_t + q_t(b_{t+1}, k_{t+1})b_{t+1} - p_tk_{t+1}.$$

- q_t price of deposits p_t price of capital (liquid market)
 - Productivity
 - At t = 0, iid shock productivity z_0 , drawn cdf F
 - $z_t = z$ for all $t \ge 1$

Bank Optimization

$$V_t(b_t, k_t) = \max\left\{\max_{k_{t+1}, b_{t+1}, c} \log(c_t) + \beta V_{t+1}(b_{t+1}, k_{t+1}), V_t^D(k_t)\right\}$$

s.t. $c_t = (z_t + p_t)k_t - Rb_t + q_t(b_{t+1}, k_{t+1})b_{t+1} - p_tk_{t+1}$

$$V_t(b_t, k_t) = \max\left\{\max_{k_{t+1}, b_{t+1}, c} \log(c_t) + \beta V_{t+1}(b_{t+1}, k_{t+1}), V_t^D(k_t)\right\}$$

s.t. $c_t = (z_t + p_t)k_t - Rb_t + q_t(b_{t+1}, k_{t+1})b_{t+1} - p_tk_{t+1}$

For default, assume

- Permanent financial exclusion b' = 0
- Productivity loss $y = z^D k$

$$V_t^D(k_t) = \max_{c_t, k_{t+1}} \log(c_t) + \beta V_{t+1}^D((p_{t+1} + z^D)k_{t+1})$$

s.t.
$$c_t = (p + z^D)k_t - p_t k_{t+1}$$

• Equilibrium default only at t = 0

- Equilibrium default only at t = 0
- Bank at time t faces $q_t = 1$ if

$$V_{t+1}^{R}(b',k') \geq V_{t+1}^{D}(k')$$

Otherwise, q = 0.

- Equilibrium default only at t = 0
- Bank at time t faces $q_t = 1$ if

$$V_{t+1}^{R}(b',k') \geq V_{t+1}^{D}(k')$$

Otherwise, q = 0.

• Guess and verify borrowing constraint

 $b_{t+1} \leq \gamma_t p_{t+1} k_{t+1}$

where $\{\gamma_t\}$ is an eqm. object to be determined

Denote
$$n_t^D = (z^D + p_t)k_t$$

 $V_t^D(n_t^D) = A + \frac{1}{1-\beta}\log(n_t^D) + \frac{\beta}{1-\beta}\sum_{\tau \ge t}\beta^{\tau-t}\log\left(R_{\tau+1}^D\right),$

where the return on capital under default

$$R_{t+1}^{D} = \frac{z^{D} + p_{t+1}}{p_{t}}$$

and $A \equiv \frac{1}{1-\beta} \left[\log(1-\beta) + \frac{\beta}{1-\beta} \log(\beta) \right]$
 $C_{t}^{D}(k) = (1-\beta)n_{t}^{D}, \qquad \mathcal{K}_{t+1}^{D}(k) = \beta \frac{n_{t}^{D}}{p_{t}}$

The Value of Repayment

Denote
$$n_t^R = (z + p_t)k_t - b_t R$$

 $V_t^R(n_t^R) = A + \frac{1}{1-\beta}\log(n_t^R) + \frac{\beta}{1-\beta}\sum_{\tau \ge t}^{\infty} \beta^{\tau-t}\log(R_{\tau+1}^e),$

where returns are

$$R_{t+1}^{e} = R_{t+1}^{k} + (R_{t+1}^{k} - R) \frac{\gamma_{t} \rho_{t+1}}{\rho_{t} - \gamma_{t} \rho_{t+1}} \quad R_{t+1}^{k} \equiv \frac{z + \rho_{t+1}}{\rho_{t}},$$

The Value of Repayment

Denote
$$n_t^R = (z + p_t)k_t - b_t R$$

 $V_t^R(n_t^R) = A + \frac{1}{1-\beta}\log(n_t^R) + \frac{\beta}{1-\beta}\sum_{\tau \ge t}^{\infty} \beta^{\tau-t}\log(R_{\tau+1}^e),$

where returns are

$$R_{t+1}^e = R_{t+1}^k + (R_{t+1}^k - R) \frac{\gamma_t \rho_{t+1}}{\rho_t - \gamma_t \rho_{t+1}} \quad R_{t+1}^k \equiv \frac{z + \rho_{t+1}}{\rho_t},$$

Policies:

$$\mathcal{C}_t^R(n_t) = (1-\beta)n_t^R$$

 $\mathcal{B}_{t+1}^{R}(n) = \gamma_t p_{t+1} \mathcal{K}_{t+1}^{R}(n_t^{R}), \qquad \mathcal{K}_{t+1}^{R}(n) = \frac{\beta n}{p_t - \gamma_t p_{t+1}} \text{ if } R_{t+1}^k > R$

• Given a sequence of prices, a bank is indifferent between repaying and defaulting for if $V_{t+1}^R(n_{t+1}^R) = V_{t+1}^D(n_{t+1}^D)$

$$((z+p_t)k_t - R\gamma_{t-1}p_tk_t)\prod_{s=t+1}^{\infty} (R_s^e)^{\beta^{s-t}} = (z^D + p_t)k_t\prod_{s=t+1}^{\infty} (R_s^D)^{\beta^{s-t}}$$

for $t \geq 0$

 \Rightarrow Equilibrium consistent borrowing limit

$$\frac{z + p_{t+1}(1 - \gamma_t R)}{z^D + p_{t+1}} = \left(1 - \gamma_{t+1} \frac{p_{t+2}}{p_{t+1}}\right)^{\beta}$$

• Given a sequence of prices, a bank is indifferent between repaying and defaulting for if $V_{t+1}^R(n_{t+1}^R) = V_{t+1}^D(n_{t+1}^D)$

$$((z+p_t)k_t - R\gamma_{t-1}p_tk_t)\prod_{s=t+1}^{\infty} (R_s^e)^{\beta^{s-t}} = (z^D + p_t)k_t\prod_{s=t+1}^{\infty} (R_s^D)^{\beta^{s-t}}$$

for $t \geq 0$

 \Rightarrow Equilibrium consistent borrowing limit

$$\frac{z + p_{t+1}(1 - \gamma_t R)}{z^D + p_{t+1}} = \left(1 - \gamma_{t+1} \frac{p_{t+2}}{p_{t+1}}\right)^{\beta}$$

• Given a sequence of prices, a bank is indifferent between repaying and defaulting for if $V_{t+1}^R(n_{t+1}^R) = V_{t+1}^D(n_{t+1}^D)$

$$((z+p_t)k_t - R\gamma_{t-1}p_tk_t)\prod_{s=t+1}^{\infty} (R_s^e)^{\beta^{s-t}} = (z^D + p_t)k_t\prod_{s=t+1}^{\infty} (R_s^D)^{\beta^{s-t}}$$

for $t \geq 0$

 \Rightarrow Equilibrium consistent borrowing limit

$$\frac{z + p_{t+1}(1 - \gamma_t R)}{z^D + p_{t+1}} = \left(1 - \gamma_{t+1} \frac{p_{t+2}}{p_{t+1}}\right)^{\beta}$$

• Potentially many solutions for γ_t , but show that only one consistent with NPG

$$\gamma_{t+1} = 1 - \left(\frac{R^k(p)/R - \gamma_t}{R^D(p)/R}\right)^{\frac{1}{\beta}} \equiv H(\gamma_t)$$

$$\gamma_{t+1} = 1 - \left(\frac{R^k(p)/R - \gamma_t}{R^D(p)/R}\right)^{\frac{1}{\beta}} \equiv H(\gamma_t)$$

- If partial eqm \exists , two fixed points: only smallest satisfies NPG
 - $\circ~$ First fixed point unstable \Rightarrow pins down $\gamma_t=\gamma^\star$

$$\gamma_{t+1} = 1 - \left(\frac{R^k(p)/R - \gamma_t}{R^D(p)/R}\right)^{\frac{1}{\beta}} \equiv H(\gamma_t)$$

- If partial eqm \exists , two fixed points: only smallest satisfies NPG
 - $\circ~$ First fixed point unstable \Rightarrow pins down $\gamma_t=\gamma^\star$

$$\gamma_{t+1} = 1 - \left(\frac{R^k(p)/R - \gamma_t}{R^D(p)/R}\right)^{\frac{1}{\beta}} \equiv H(\gamma_t)$$

- If partial eqm \exists , two fixed points: only smallest satisfies NPG
 - $\circ~$ First fixed point unstable \Rightarrow pins down $\gamma_t=\gamma^{\star}$
 - γ^{\star} is increasing in (β, z) and decreasing in $(R, z^{D}, \mathbf{R}^{k})$

Time 0 default thresholds: with and without runs

Time 0 Default Thresholds: The Case of Fundamentals

• Indifference condition at t = 0 given by

$$((\hat{z}^{F}+p_{0})k_{0}-Rb_{0})\prod_{t=1}^{\infty}(R_{t}^{e})^{\beta^{t}}=(z^{D}+p_{0})k_{0}\prod_{t=1}^{\infty}(R_{t}^{D})^{\beta^{t}}.$$

• If
$$z_0 < \hat{z}^F$$
, a bank defaults at $t = 0$

Time 0 Default Thresholds: The Case of Fundamentals

• Indifference condition at t = 0 given by

$$\hat{z}^{F} = (z^{D} + p_{0}) \prod_{t=1}^{\infty} \left(\frac{R_{t}^{D}}{R_{t}^{e}}\right)^{\beta^{t}} - p_{0} \left(1 - R\frac{b_{0}}{p_{0}k_{0}}\right)$$

• If
$$z_0 < \hat{z}^F$$
, a bank defaults at $t = 0$

Time 0 Default Thresholds: The Case of Runs

When a bank faces a run and repays, its value is:

$$V_0^{Run}(n_0) = \max_{k_1 \ge 0, c_0 > 0} \log(c_0) + \beta V_1^R \left((z + p_1)k_1 \right),$$

subject to
O Deleveraging

$$c_0 = n_0 + p_0 k_1.$$

Time 0 Default Thresholds: The Case of Runs

When a bank faces a run and repays, its value is:

$$V_0^{Run}(n_0) = \max_{k_1 \ge 0, c_0 > 0} \log(c_0) + \beta V_1^R \left((z + p_1)k_1 \right),$$

subject to
$$0 \quad \text{Deleveraging}$$
$$c_0 = n_0 + \cancel{b'} - p_0 k_1.$$

• Run & repayment is out-of-equilibrium

Run Thresholds, Spreads and Franchise Value

$$\hat{z}^{Run} = (z^D + p_0) \left(\frac{R_1^D}{R_1^k}\right)^\beta \times \prod_{t=2}^\infty \left(\frac{R_t^D}{R_t^e}\right)^{\beta^t} - p_0 \left(1 - R\frac{b_0}{p_0 k_0}\right)$$

- Run threshold higher than fundamental one if $R_1^K > R$:
 - Inability to leverage reduces franchise value ⇒ Runs with liquid assets if R^K > R
- If $R_1^k = R$ (or $\gamma_0 = 0$), thresholds coincide
 - Access to spot market renders runs irrelevant

Run Thresholds, Spreads and Franchise Value

$$\hat{z}^{Run} = (z^D + p_0) \left(\frac{R_1^D}{R_1^k}\right)^\beta \times \prod_{t=2}^\infty \left(\frac{R_t^D}{R_t^e}\right)^{\beta^t} - p_0 \left(1 - R\frac{b_0}{p_0 k_0}\right)$$

- Run threshold higher than fundamental one if $R_1^K > R$:
 - Inability to leverage reduces franchise value ⇒ Runs with liquid assets if R^K > R
- If $R_1^k = R$ (or $\gamma_0 = 0$), thresholds coincide
 - · Access to spot market renders runs irrelevant
- Marginal bank at run threshold: lower net purchases of capital than marginal bank at fundamental threshold

• In particular,
$$\hat{k}_1^{Run} < k_1^D < \hat{k}_1^F$$

General Equilibrium

• Market clearing for capital

$$K_t^D + K_t^R = \overline{K}$$

Consider two cases: (i) all banks subject to runs if vulnerable $\hat{z} = \hat{z}^{Run}$. (ii) only fundamental defaults $\hat{z} = \hat{z}^{F}$

General Equilibrium

• Market clearing for capital

$$K_t^D + K_t^R = \overline{K}$$

Consider two cases: (i) all banks subject to runs if vulnerable $\hat{z} = \hat{z}^{Run}$. (ii) only fundamental defaults $\hat{z} = \hat{z}^{F}$

A competitive equilibrium is a sequence of prices of capital, $\{p_t\}_{t=0}^{\infty}$, a sequence of borrowing limits, $\{\gamma_t\}_{t=0}^{\infty}$, a sequence of net worths, debt and capital holdings, $\{N_t, N_t^D, B_t, K_t^R, K_t^D\}_{t=0}^{\infty}$, and a default threshold \hat{z} , such that

- (i) Aggregates are consistent with banks' policies
- (ii) The borrowing limits γ_t are equilibrium consistent
- (iii) Markets clear for capital
- (iv) The thresholds satisfy corresponding conditions

• Government purchases assets K^g at t = 0

$$K_t^D + K_t^R + \mathbf{K}^{\mathbf{g}} = \overline{K}$$

Credit Easing

• Government purchases assets K^g at t = 0

$$K_t^D + K_t^R + \mathbf{K}^{\mathbf{g}} = \overline{K}$$

• Govt. budget constraints at t = 0, 1

 $p_0 \mathbf{K}^{g} = \tau (N_0 + N_0^D) + B_1^{g}, \qquad RB_1^{g} = (z^{g} + p_1) \mathbf{K}^{g}$

Credit Easing

• Government purchases assets K^g at t = 0

$$K_t^D + K_t^R + \mathbf{K}^{\mathbf{g}} = \overline{K}$$

• Focus on govt. return $R^g = \frac{p_1 + z^g}{p_0} < R$:

$$\tau(N_0+N_0^D)=\frac{p_0K^g}{R}\left[R-R^g\right]>0,$$

 \Rightarrow Government needs to tax to cover losses

• Government purchases assets K^g at t = 0

$$K_t^D + K_t^R + \mathbf{K}^{\mathbf{g}} = \overline{K}$$

• Focus on govt. return $R^g = \frac{p_1 + z^g}{p_0} < R$:

$$\tau(N_0+N_0^D)=\frac{p_0K^g}{R}\left[R-R^g\right]>0,$$

 \Rightarrow Government needs to tax to cover losses

• If investors have same return as govt., they would not buy

Q: How do government purchases affect welfare?

$$W(\hat{z}) \equiv \int_{\hat{z}}^{\overline{z}} V_0^R((z_0 + p_0)\overline{K} - RB_0)dF(z_0) + F(\hat{z})V_0^D((z^D + p_0)\overline{K})$$

$$W(\hat{z}) \equiv \int_{\hat{z}}^{\overline{z}} V_0^R((z_0 + p_0)\overline{K} - RB_0) dF(z_0) + F(\hat{z})V_0^D((z^D + p_0)\overline{K})$$

The effect of a change in the default threshold

$$W'(\hat{z}) = -f(\hat{z}) \underbrace{\left[V_0^R((\hat{z} + p_0)\overline{K} - RB_0) - V_0^D((z^D + p_0)\overline{K})
ight]}_{>0 \text{ under runs}}$$

- A change in default threshold irrelevant under fundamentals
- A reduction in default threshold improves welfare under runs

$$W(\hat{z}) \equiv \int_{\hat{z}}^{\overline{z}} V_0^R((z_0 + p_0)\overline{K} - RB_0) dF(z_0) + F(\hat{z})V_0^D((z^D + p_0)\overline{K})$$

The effect of a change in the default threshold

$$W'(\hat{z}) = -f(\hat{z}) \underbrace{\left[V_0^R((\hat{z} + p_0)\overline{K} - RB_0) - V_0^D((z^D + p_0)\overline{K})
ight]}_{>0 \text{ under runs}}$$

- A change in default threshold irrelevant under fundamentals
- A reduction in default threshold improves welfare under runs
 - Crucial: how credit easing affects default thresholds?

$$\hat{V}((1-\tau_0)((\hat{z}+p_0)\overline{K}-RB_0))=V_0^D((1-\tau_0)(z^D+p_0)\overline{K})$$

- With proportional tax to wealth, effects of K^g operate exclusively through {p_t}
- Assuming only p_0 changes, we can show that $\frac{d\hat{z}^{Run}}{dp_0} < 0$
 - Banks facing a run are net sellers of capital and thus benefit from a rise in asset prices
 - Defaulting banks may also benefit but to lower extent

$$\hat{V}((1-\tau_0)((\hat{z}+p_0)\overline{K}-RB_0))=V_0^D((1-\tau_0)(z^D+p_0)\overline{K})$$

- With proportional tax to wealth, effects of K^g operate exclusively through {p_t}
- Assuming only p_0 changes, we can show that $\frac{d\hat{z}^{Run}}{dp_0} < 0$
 - Banks facing a run are net sellers of capital and thus benefit from a rise in asset prices
 - Defaulting banks may also benefit but to lower extent
 - In the case of fundamentals, change in \hat{z} is ambiguous
 - To the extent that marginal bank is a net buyer, $\frac{d\hat{z}^F}{dp_0} > 0$

$$\hat{V}((1-\tau_0)((\hat{z}+p_0)\overline{K}-RB_0))=V_0^D((1-\tau_0)(z^D+p_0)\overline{K})$$

- With proportional tax to wealth, effects of K^g operate exclusively through {p_t}
- Assuming only p_0 changes, we can show that $\frac{d\hat{z}^{Run}}{dp_0} < 0$
 - Banks facing a run are net sellers of capital and thus benefit from a rise in asset prices
 - Defaulting banks may also benefit but to lower extent
 - In the case of fundamentals, change in \hat{z} is ambiguous
 - To the extent that marginal bank is a net buyer, $\frac{d\hat{z}^{F}}{dp_{0}}>0$
- If credit easing raises asset prices, positive effects on banks' welfare under runs

How credit easing affects default thresholds?

How credit easing affects default thresholds?

Credit easing under fundamentals

Credit easing reduces defaults under runs

Credit Easing desirable under Runs

Credit Easing desirable under Runs

Credit Easing desirable under Runs

Note: Creditors' welfare goes up as long as fewer banks default

- Sunspots
- Endogenous initial debt level B₀
- Alternative default values

- A dynamic macroeconomic model of self-fulfilling bank runs
- General equilibrium effects crucial to assess govt. policies
- Desirability of credit easing depends on whether a crisis is diriven by fundamentals or self-fulfilling runs
- Agenda:
 - Anticipation effects of credit easing
 - Use framework for other policies, such as monetary and macroprudential