Banks, Liquidity Management and Monetary Policy

Javier Bianchi
Wisconsin & NBER

Saki Bigio
Columbia GSB
Central Banks have been facing unprecedented conditions in financial markets

- Deterioration of banks’ balance sheet, collapse in bank lending, weak demand for credit, drop in money multiplier, liquidity trap
Introduction

- Central Banks have been facing unprecedented conditions in financial markets
 - Deterioration of banks’ balance sheet, collapse in bank lending, weak demand for credit, drop in money multiplier, liquidity trap

- Monetary policy has responded also in unprecedented ways:
 - Liquidity facilities, quantitative easing, emergency lending, purchases of commercial paper, forward guidance, long-term ref. operations
Introduction

- Central Banks have been facing unprecedented conditions in financial markets
 - Deterioration of banks’ balance sheet, collapse in bank lending, weak demand for credit, drop in money multiplier, liquidity trap
- Monetary policy has responded also in unprecedented ways:
 - Liquidity facilities, quantitative easing, emergency lending, purchases of commercial paper, forward guidance, long-term ref. operations
- Liquidity at the epicenter of the crisis and policy intervention
Introduction

- Central Banks have been facing unprecedented conditions in financial markets
 - Deterioration of banks’ balance sheet, collapse in bank lending, weak demand for credit, drop in money multiplier, liquidity trap

- Monetary policy has responded also in unprecedented ways:
 - Liquidity facilities, quantitative easing, emergency lending, purchases of commercial paper, forward guidance, long-term ref. operations

- Liquidity at the epicenter of the crisis and policy intervention

- **Want**: model of banks’ liquidity management to understand transmission of monetary policy
Model Overview

1. Liquidity Management Tradeoff
 - (+) Profit on Loans
 - Spread between **illiquid loans** and liquid liabilities (deposits, credit lines)
 - (-) Illiquidity Risk
 - Liabilities may be transferred, may be forced to borrow

2. Monetary Policy
 - Liquidity channel: MP affects banks' tradeoff between extending loans and holding liquid assets

3. Tractability
Model Overview

1. Liquidity Management Tradeoff
 - (+) Profit on Loans
 - Spread between illiquid loans and liquid liabilities (deposits, credit lines)
 - (-) Illiquidity Risk
 - Liabilities may be transferred, may be forced to borrow

2. Monetary Policy
 - Liquidity channel: MP affects banks’ tradeoff between extending loans and holding liquid assets
Model Overview

1. Liquidity Management Tradeoff
 - (+) Profit on Loans
 - Spread between **illiquid loans** and liquid liabilities (deposits, credit lines)
 - (-) Illiquidity Risk
 - Liabilities may be transferred, may be forced to borrow

2. Monetary Policy
 - Liquidity channel: MP affects banks’ tradeoff between extending loans and holding liquid assets

3. Tractability
Quantitative Application

Why are banks stockpiling cash rather than lending?
Quantitative Application

Why are banks stockpiling cash rather than lending?

Four Hypothesis

1. Equity Losses
Why are banks stockpiling cash rather than lending?

Four Hypothesis

1. Equity Losses
2. Capital Requirements
Quantitative Application

Why are banks stockpiling cash rather than lending?

Four Hypothesis

1. Equity Losses
2. Capital Requirements
3. Uncertainty in Interbank markets
Quantitative Application

Why are banks stockpiling cash rather than lending?

Four Hypothesis

1. Equity Losses
2. Capital Requirements
3. Uncertainty in Interbank markets
4. Weak Loan Demand
1. Banks’ Liquidity Management
1. Banks’ Liquidity Management

2. Equilibrium Stochastic Steady State
 ○ Static Demand for Loans
1. Banks’ Liquidity Management

2. Equilibrium Stochastic Steady State
 - Static Demand for Loans

3. Transitional Dynamics Experiments
1. Banks’ Liquidity Management

2. Equilibrium Stochastic Steady State
 ◦ Static Demand for Loans

3. Transitional Dynamics Experiments

4. Estimation of the model to evaluate four hypothesis (in progress)
Model
Model - Environment

- **Time:** \(t=1,2,3,\ldots \)
Model - Environment

- **Time:** $t=1,2,3,\ldots$

 - **Two stages:** $s=l,b$

 - Lending stage (l) and balancing stage (b)
Model - Environment

- **Time:** $t=1,2,3,\ldots$
 - Two stages: $s=l,b$
 - Lending stage (l) and balancing stage (b)

- Continuum of Heterogeneous Banks $z \in [0,1]$
Model - Environment

- **Time:** $t=1,2,3,...$
 - Two stages: $s=l,b$
 - Lending stage (l) and balancing stage (b)

- Continuum of Heterogeneous Banks $z \in [0,1]$

- **Utility function:** Concave utility U over dividends div_t
Liabilities:

- D_t demand deposits \((\textit{numeraire})\)
Bank’s State Variable - Bank Balance Sheet

- **Liabilities:**
 - D_t demand deposits (*numeraire*)

- **Assets:**
 - C_t reserves (only traded among banks or with central bank)
 - B_t loans
Bank’s State Variable - Bank Balance Sheet

- **Liabilities:**
 - D_t demand deposits (*numeraire*)

- **Assets:**
 - C_t reserves (only traded among banks or with central bank)
 - B_t loans

- **Equity**
 - $N_t = q_t B_t + C_t (1 + r) - D_t$
Liquidity Management

Bank Balance Sheet
Liquidity Management

Bank Balance Sheet
Loans B_t

- Loans: perpetual securities (long maturity)
 - Decaying-coupon Consol
Loans B_t

- Loan contract specifies:
 1. price q_t
 2. Face value I_t
 3. $q_t^l I_t$ checks given to firms or households
Loans B_t

- Loan contract specifies:
 1. price q_t
 2. Face value I_t
 3. $q_t I_t$ checks given to firms or households

- Repayment:
 - $I_t \left((1 - \delta), (1 - \delta)\delta^2, \ldots (1 - \delta)\delta^n\right)$ in period 1, 2, ..., n
Recursively, the bank loans can at date $t+1$ equal:

$$B_{t+1} = \delta B_t + I_t$$
Loans B_t

- Recursively, the bank loans can at date $t+1$ equal:

$$B_{t+1} = \delta B_t + I_t$$

- Loan is illiquid:
Loans B_t

- Recursively, the bank loans can at date $t+1$ equal:

\[B_{t+1} = \delta B_t + I_t \]

- Loan is illiquid:
 - Lending stage: Loans **can** be sold
 - Balancing stage: Loans **cannot** be sold
Loans B_t

- Recursively, the bank loans can at date $t+1$ equal:

$$B_{t+1} = \delta B_t + I_t$$

- Loan is illiquid:
 - Lending stage: Loans can be sold
 - Balancing stage: Loans cannot be sold

- Downward sloping demand for loans
 - $I_t^d = \Theta_t (1 + r_t^L)^\varepsilon$
Deposits D_t

- **Lending Stage**: Choice of deposits subject to Leverage Constraint
Deposits D_t

- **Lending Stage:** Choice of deposits subject to Leverage Constraint
 - $D_t \leq \kappa N_t$
Deposits D_t

- **Lending Stage:** Choice of deposits subject to Leverage Constraint
 - $D_t \leq \kappa N_t$

- **Balancing Stage:**
 - $\omega \in (-\infty, 1]$ random fraction of D_t may leave
 - Randomness in payments system and deposit holdings
 - Withdrawal, pay other bank with reserves
 - $\omega \sim F_t(\omega)$
 - $\mathbb{E}(\omega) = 0$ - deposits don’t leave the bank system
Deposits D_t

- **Lending Stage**: Choice of deposits subject to Leverage Constraint
 - $D_t \leq \kappa N_t$

- **Balancing Stage**:
 - $\omega \in (-\infty, 1]$ random fraction of D_t may leave
 - Randomness in payments system and deposit holdings
 - Withdrawal, pay other bank with reserves
 - $\omega \sim F_t(\omega)$
 - $\mathbb{E}(\omega) = 0$ - deposits don’t leave the bank system

- Penalty for insufficient reserves: $\chi(C, D)$.
- In particular, $\chi(\rho D_t - C_t)$

\[
\chi_t(x) = \begin{cases}
\chi x & \text{if } x \leq 0 \\
\overline{\chi} x & \text{if } x > 0
\end{cases}
\]

where $\rho_t \in [0, 1]$ represent a reserve requirement
Reserves C_t

- Fixed Aggregate Supply determined by central bank: $M0_t$

- Transferred across banks
 - Loan withdrawal
 - Interbank purchases φ_t

- Precautionary motive
 - Avoid penalty χ
Liquidity Management

Bank Balance Sheet - Liquid Assets
Central Bank Tools

- Interest rate and Reserve Requirements:
- OMO: purchase of Loans or Deposits for Reserves
- κ capital requirements
Aggregate States

- Governments Policy Path \(\{ \rho_t, M0_t, D_t^G, B_t^G, \kappa_t, \chi_t, \bar{\chi}_t \}_{t \geq 0} \)

- \(\Theta_t \) is the slope of demand curve.

- \(F_t \) process for withdrawal risk

- Potentially: Distribution of Bank state variables
 - Only one endogenous state variable \(E_t \)

- Aggregate State Summarized: \(X_t \)
 - Model recursive in \(X_t \)
Value Function - Lending Stage

\[V^l(C, B, D; X) = \max_{I, \varphi, DIV} u(DIV) + \beta E_{\omega'}[V^b(\tilde{C}, \tilde{B}, \tilde{D}, \omega'; X)] \]

\[\tilde{D} = D + qI + DIV + \varphi(1 + r) - B(1 - \delta) \]

\[\tilde{C} = C + \varphi \]

\[\tilde{B} = \delta B + I \]

\[\tilde{D} \leq \kappa(\tilde{B}q + \tilde{C}(1 + r) - \tilde{D}), \tilde{D} \geq 0. \]
Value Function - Lending Stage

\[V^l(C, B, D; X) = \max_{I, \phi, \text{DIV}} u(\text{DIV}) + \beta E_{\omega'}[V^b(\tilde{C}, \tilde{B}, \tilde{D}, \omega'; X)] \]

\[\tilde{D} = D + qI + \text{DIV} + \phi(1 + r) - B(1 - \delta) \]

\[\tilde{C} = C + \phi \]

\[\tilde{B} = \delta B + I \]

\[\tilde{D} \leq \kappa(\tilde{B}q + \tilde{C}(1 + r) - \tilde{D}), \tilde{D} \geq 0. \]
Value Function - Lending Stage

\[V^l(C, B, D; X) = \max_{I, \varphi, DIV} u(DIV) + \beta E_{\omega'}[V^b(\tilde{C}, \tilde{B}, \tilde{D}, \omega'; X)] \]

\[\tilde{D} = D + qI + DIV + \varphi(1 + r) - B(1 - \delta) \]

\[\tilde{C} = C + \varphi \]

\[\tilde{B} = \delta B + I \]

\[\tilde{D} \leq \kappa(\tilde{B}q + \tilde{C}(1 + r) - \tilde{D}), \tilde{D} \geq 0. \]
Value Function - Lending Stage

\[V^l(C, B, D; X) = \max_{I, \varphi, DIV} u(DIV) + \beta E_{\omega'}[V^b(\tilde{C}, \tilde{B}, \tilde{D}, \omega'; X)] \]

\[\tilde{D} = D + qI + DIV + \varphi(1 + r) - B(1 - \delta) \]

\[\tilde{C} = C + \varphi \]

\[\tilde{B} = \delta B + I \]

\[\tilde{D} \leq \kappa(\tilde{B}q + \tilde{C}(1 + r) - \tilde{D}), \tilde{D} \geq 0. \]
Value Function - Balancing Stage

\[V^b (C, D, B, \omega; X) = \beta \mathbb{E}[V^l (C', B', D'; X')] \]

subject to

\[C' = C - \omega D \]
\[D' = D - \omega D + \chi (\rho D (1 - \omega) - C') \]
\[B' = B \]
One Value Function

\[V^l(C, B, D; X) = \max_{\{I, DIV, \tilde{C}, \tilde{D}\} \in \mathbb{R}^4} U(DIV) \cdots \]

\[+ \beta \mathbb{E} \left[V^l(\tilde{C} - \omega' \tilde{D}, \tilde{B}, \tilde{D}(1 - \omega') + \chi(\rho \tilde{D} - (\tilde{C} - \omega' \tilde{D})); X')|X \right] \]

\[\tilde{D} = D + qI + DIV + \varphi(1 + r) - B(1 - \delta) \]

\[\tilde{B} = \delta B + I \]

\[\tilde{C} = \varphi + C \]

\[\tilde{D} \leq \kappa(\tilde{B}q + \tilde{C}(1 + r) - \tilde{D}), \tilde{D} \geq 0. \]
Equilibrium

- Initial conditions
- Government sequence $\left\{ \rho_t, M_0, D_t^G, B_t^G, \kappa_t, \chi_t, \overline{\chi}_t \right\}_{t \geq 0}$
- Bank choices $\{C_t, B_t, D_t, DIV_t\}_{t \geq 0}$
- And prices $\{q_t, r_t\}_{t \geq 0}$
- Optimality of choices given prices
- Money Market Clears:
 \[\int_{0}^{\infty} C_t(z) \, dz = M_0, \forall t \]
- Loan Market Clears
 \[I_t^S = \int_{0}^{\infty} \Delta B_{t+1}(z) \, dz + \int_{0}^{\infty} \Delta B_{t+1}^G(z) \, dz, \]
 and
 \[I_t^D = \Theta_t^{-1} \left(q_t \right)^{\frac{1}{\epsilon}} = I_t^S. \]
Theory Characterization
Characterization

1. Single endogenous state
Characterization

1. Single endogenous state

2. Portfolio Separation Theorem
 - Dividend-Savings independent of Portfolio Weights
Liquidity Premium

- Banks require a higher return on loans relative to cash:

\[R^B - R^C = E_\omega' \chi' + \frac{Cov(m_{t+1}, \chi')}{E_\omega'm_{t+1}} \]

- \(m_{t+1} \) is the SDF

- Monetary policy can affect lending by altering the liquidity premium
Calibration

Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital requirement</td>
<td>$\kappa = 17$</td>
<td>6% Tier-2 Capital</td>
</tr>
<tr>
<td>Discount factor</td>
<td>$\beta = 0.99$</td>
<td>Return on Equity=8%</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>$\gamma = 1$</td>
<td>Benchmark</td>
</tr>
<tr>
<td>Loan Maturity</td>
<td>$\delta = 0.5$</td>
<td>Residual duration + buy-backs</td>
</tr>
<tr>
<td>Interest rate (annualized)</td>
<td>$r = 4%$</td>
<td>LIBOR</td>
</tr>
<tr>
<td>Liquidity Requirement</td>
<td>$\rho = 0.10$</td>
<td>Res. Req.</td>
</tr>
<tr>
<td>Loan Demand Elasticity</td>
<td>$\epsilon = 8.0$</td>
<td>-</td>
</tr>
<tr>
<td>Penalty</td>
<td>$\chi^L = 0.0%$</td>
<td>FedRate</td>
</tr>
<tr>
<td>Penalty</td>
<td>$\chi^H = 3.2%$</td>
<td>Liquidity Ratio</td>
</tr>
<tr>
<td>Withdrawal-shock volatility F_t</td>
<td></td>
<td>Non-Param Data</td>
</tr>
</tbody>
</table>
Cross-Sectional Distribution of Deviation from Cross-Sectional Average Growth Rates
Why are banks stockpiling cash rather than lending?
Why are banks stockpiling cash rather than lending?

Four Hypothesis

1. Equity Losses
2. Capital Requirements
3. Uncertainty in Interbank markets
4. Weak Loan Demand
Estimation Strategy: Four shocks

- We calibrate:
 - Equity losses resulting from subprime (4 % of equity)
 - Raise in capital requirements according to Basel III (2.5 % of extra capital)
Estimation Strategy: Four shocks

- We calibrate:
 - Equity losses resulting from subprime (4% of equity)
 - Raise in capital requirements according to Basel III (2.5% of extra capital)

- We estimate
 - Probability of a bank-run (risk of large withdrawal of deposits)
 - Reduction in credit demand
Estimation Strategy: Four shocks

- We calibrate:
 - Equity losses resulting from subprime (4 % of equity)
 - Raise in capital requirements according to Basel III (2.5 % of extra capital)

- We estimate
 - Probability of a bank-run (risk of large withdrawal of deposits)
 - Reduction in credit demand

- We assume they follow a deterministic AR(1) process and estimate:
 1. the initial shock,
 2. persistence,
 3. time of the shock
Estimation Strategy: Four shocks

- We calibrate:
 - Equity losses resulting from subprime (4% of equity)
 - Raise in capital requirements according to Basel III (2.5% of extra capital)

- We estimate
 - Probability of a bank-run (risk of large withdrawal of deposits)
 - Reduction in credit demand

- We assume they follow a deterministic AR(1) process and estimate
 (i) the initial shock, (ii) persistence, (iii) time of the shock

- These parameters are set to minimize distance between model transition in first 7 years and the sequence of reserves, dividend rates and lending observed in the data
Estimation Strategy: Four shocks

- We calibrate:
 - Equity losses resulting from subprime (4% of equity)
 - Raise in capital requirements according to Basel III (2.5% of extra capital)

- We estimate
 - Probability of a bank-run (risk of large withdrawal of deposits)
 - Reduction in credit demand

- We assume they follow a deterministic AR(1) process and estimate:
 1. the initial shock,
 2. persistence,
 3. time of the shock

- These parameters are set to minimize distance between model transition in first 7 years and the sequence of reserves, dividend rates and lending observed in the data

- Evaluate the magnitude of the shocks and the relative importance of each shock
Estimation Strategy: Four shocks

- We calibrate:
 - Equity losses resulting from subprime (4% of equity)
 - Raise in capital requirements according to Basel III (2.5% of extra capital)

- We estimate
 - Probability of a bank-run (risk of large withdrawal of deposits)
 - Reduction in credit demand

- We assume they follow a deterministic AR(1) process and estimate
 (i) the initial shock, (ii) persistence, (iii) time of the shock

- These parameters are set to minimize distance between model transition in first 7 years and the sequence of reserves, dividend rates and lending observed in the data

- Evaluate the magnitude of the shocks and the relative importance of each shock
Preview of Results

- Equity Losses and Capital Requirements: similar effects
 - Contraction in lending volumes
 - Drop in cash holdings
 - Drop in dividend rates
 - Rise in spreads

- Withdrawal risk and demand shocks
 - Both generate increase in cash holdings
 - But they differ in prediction for spreads and dividend rates
 - Withdrawal risk predicts fall in dividends and increase in spreads
 - Demand shocks predict increase in dividends and decrease in spreads

- Preliminary results provide prominent role to withdrawal risk and demand shocks

- We infer that economy was first hit by withdrawal risk and then by fall in demand due to evolution of dividends
Workings of the Model

- Deterministic Transitional Dynamics
Workings of the Model

- Deterministic Transitional Dynamics

- Steady-state:
Workings of the Model

- Deterministic Transitional Dynamics

- Steady-state:
 - Fix $\{\rho_t, M0_t, \kappa_t, \underline{\chi}_t, \overline{\chi}_t\}_{t \geq 0}$
 - Find (q,r) such that equity doesn’t grow
 - Solve for E: financial sector size
Workings of the Model

- Deterministic Transitional Dynamics

- Steady-state:
 - Fix \(\left\{ \rho_t, M0_t, \kappa_t, \chi_t, \bar{\chi}_t \right\}_{t \geq 0} \)
 - Find \((q,r) \) such that equity doesn’t grow
 - Solve for E: financial sector size

- Transitional Dynamics: one shock at a time
Workings of the Model

- Deterministic Transitional Dynamics

- Steady-state:
 - Fix \(\{ \rho_t, M0_t, \kappa_t, \chi_t, \bar{\chi}_t \} \) \(\geq 0 \)
 - Find \((q,r) \) such that equity doesn’t grow
 - Solve for \(E \): financial sector size

- Transitional Dynamics: one shock at a time
 - Find \((q_t, r_t) \), consistent with equity growth and convergence
Equity Loss - E_0 by 4 percent
Permanent Rise in Capital Requirements - (AR-1 process, extra 2.5 % capital)
Perman. Rise in Cap. Requirements

![Graphs showing the relationship between equity, total lending, return on loans, and total cash.](image)
Permanent Rise in Cap. Requirements

Lending Rate (b)

Reserve Rate (c)

Dividend Rate (div)

Portfolio Value (\(\Omega \))

Bank Value

Liquidity Risk
Shock to probability of bank-run (AR-1 process, initial increase is 10 percent)
Bank-run Risk

Equity

Total Lending

Return on Loans

Total Cash

39
Bank-run Risk

- Lending Rate (b)
- Reserve Rate (c)
- Dividend Rate (div)
- Portfolio Value (Ω)
- Bank Value
- Liquidity Risk
Loan Demand Shock - $\downarrow \Theta_t$ (AR (1) process, 20 percent initial decrease)
Demand Shock

Equity

Return on Loans

Total Lending

Total Cash
Demand Shock

- Lending Rate (b)
- Reserve Rate (c)
- Dividend Rate (div)
- Portfolio Value (\(\Omega\))
- Bank Value
- Liquidity Risk
Transitory Reduction in χ (20% initial reduction, AR-1 process)
Transitory Reduction in χ

Equity

- χ decreases initially, then stabilizes around 0.

Total Lending

- χ decreases significantly initially, then stabilizes.

Return on Loans

- χ increases rapidly to a peak, then stabilizes around 0.

Total Cash

- χ decreases rapidly to a peak, then stabilizes around 0.
Transitory Reduction in χ
Transitory Reduction in r (50 % initial reduction, AR-1 process)
Transitory Reduction in r

![Graphs of Equity, Total Lending, Return on Loans, Total Cash](image)

Equity
- The graph shows a slight decrease in equity over time, with a peak around 50 and a slight decline thereafter.

Total Lending
- The graph indicates a sharp increase in total lending, reaching a peak around 50 and then stabilizing.

Return on Loans
- The graph displays a sharp decline in return on loans, starting from a high value and decreasing rapidly to a low.

Total Cash
- The graph shows a dramatic decrease in total cash, starting from a high value and dropping sharply to a low.
Transitory Reduction in r

<table>
<thead>
<tr>
<th>Lending Rate (b)</th>
<th>Reserve Rate (c)</th>
<th>Dividend Rate (div)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>50</td>
<td>2.3</td>
<td>0.02</td>
</tr>
<tr>
<td>100</td>
<td>15.4</td>
<td>0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Portfolio Value (Ω)</th>
<th>Bank Value</th>
<th>Liquidity Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0002</td>
<td>1.5</td>
</tr>
<tr>
<td>50</td>
<td>1.0002</td>
<td>1.6</td>
</tr>
<tr>
<td>100</td>
<td>1.0002</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Conclusions

- We developed a model of banks’ liquidity management
- Monetary policy has real effects via a liquidity channel
- Quantitative analysis suggests that demand shocks and uncertainty about the risk of bank-runs played a prominent role in the US financial crises