Helicopter Drops and Liquidity Traps

Manuel Amador Javier Bianchi

July 2023

Impulse and Propagation, Summer Institute

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

This Paper

Theory:

▶ Helicopter drops can be useful during a liquidity trap

When the Central Bank

▶ faces balance sheet constraints, and

▶ cannot commit

Key mechanism: \uparrow i are restricted by central bank net worth

► Cannot reduce M without assets

Helps with the time inconsistency problem at the ZLB

This Paper

Theory:

▶ Helicopter drops can be useful during a liquidity trap

When the Central Bank

▶ faces balance sheet constraints, and

cannot commit

Key mechanism: $\uparrow\,i$ are restricted by central bank net worth

► Cannot reduce M without assets

Helps with the time inconsistency problem at the ZLB

Complementary to other policies, such as QE

▶ Bhattarai, Eggertsson and Gafarov, 2022

Monetary Authority

- Accumulates risk-free assets A
- Issues monetary liabilities M
- ► Transfers τ_t to fiscal authority

$$M_{t-1} + \frac{A_t}{1 + \iota_t} + \tau_t = M_t + A_{t-1}.$$

Monetary Authority

- Accumulates risk-free assets A
- Issues monetary liabilities M
- ► Transfers τ_t to fiscal authority

$$M_{t-1} + \frac{A_t}{1 + \iota_t} + \tau_t = M_t + A_{t-1}.$$

Define nominal operating profits as

$$\tau^{\star}(A,\iota)\equiv\frac{\iota}{1+\iota}A$$

Monetary Authority

- Accumulates risk-free assets A
- Issues monetary liabilities M
- ► Transfers τ_t to fiscal authority

$$M_{t-1} + \frac{A_t}{1+\iota_t} + \tau_t = M_t + A_{t-1}.$$

Define nominal operating profits as

$$\tau^{\star}(A,\iota) \equiv \frac{\iota}{1+\iota}A$$

Define nominal networth as $N_t \equiv A_t - M_t.$

<u>Remark:</u> $N_t < N_{t-1}$ if and only if $\tau_t > \tau^\star(A_t, \iota_t)$

Monetary Authority (ctd)

Two balance-sheet constraints:

- (1) Remittance constraint: $\tau_t \ge \tau^*(A_t, \iota_t) \Rightarrow N_t \le N_{t-1}$
- (2) Non-negative asset holdings: $A_t \ge 0$

Fiscal Authority

- ▶ B_t: Nominal debt
- \blacktriangleright T_t: Lump-sum transfer to households
- ▶ Budget constraint:

$$B_{t-1} + T_t = \frac{B_t}{1 + \iota_t} + \tau_t$$

Fiscal Authority

- ▶ B_t: Nominal debt
- \blacktriangleright T_t: Lump-sum transfer to households
- ▶ Budget constraint:

$$B_{t-1} + T_t = \frac{B_t}{1 + \iota_t} + \tau_t$$

Let
$$i_t \equiv \log(1 + \iota_t)$$
. $y_t \equiv \log(Y_t/\overline{Y})$, $\pi_t \equiv \log(P_t/P_{t-1})$

Households / Firms

Households

- ▶ Issues bonds A_t , accumulates gov. bonds B_t
- ▶ CRRA, with money in the utility function, separable.
- ξ_t discount rate shock.

Households / Firms

Households

- ▶ Issues bonds A_t , accumulates gov. bonds B_t
- ▶ CRRA, with money in the utility function, separable.
- ξ_t discount rate shock.

Firms

Phillips curve:

$$\pi_t = \beta \pi_{t+1} + \kappa y_t,$$

Private Sector Equilibrium (PSE)

 $\underline{PSE}: A \text{ sequence } \{y_t, \, \pi_t, \, i_t, \, P_t, \, M_t, \, A_t, \, B_t, \, \tau_t, \, T_t\}$

$$\begin{split} y_t &= y_{t+1} - \sigma(i_t - \pi_{t+1} - \rho - \xi_t) \\ i_t &\geq 0 \\ \frac{M_t}{P_t} &\geq L(y_t, i_t); \text{ with equality if } i_t > 0 \\ \pi_t &= \beta \pi_{t+1} + \kappa y_t \end{split}$$

Budget constraints hold, and HH transversality:

$$\lim_{t\to\infty}\frac{B_t - A_t + M_t}{\prod_{s=0}^t (1+\iota_s)} = 0$$

PSE consistent with balance sheet constraints if:

$$\tau_t \ge \tau^*(A_t, i_t)$$
$$A_t \ge 0$$

PSE consistent with balance sheet constraints if:

$$\tau_t \ge \tau^*(A_t, i_t)$$
$$A_t \ge 0$$

Definition: Helicopter drop at time t if $\tau_t > \tau^\star(A_t, i_t)$

▶ Equivalent: transfer τ^* to FA and remaining to households

PSE consistent with balance sheet constraints if:

$$\tau_t \ge \tau^*(A_t, i_t)$$
$$A_t \ge 0$$

Definition: Helicopter drop at time t if $\tau_t > \tau^\star(A_t,i_t)$

MA budget constraint:

$$M_t - M_{t-1} = \overbrace{(A_t - A_{t-1})}^{\text{open mkt op}} + \overbrace{(\tau_t - \tau^{\star}(A_t, i_t))}^{\text{helicopter drop}}$$

PSE consistent with balance sheet constraints if:

$$\tau_t \ge \tau^*(A_t, \mathfrak{i}_t)$$
$$A_t \ge 0$$

Definition: Helicopter drop at time t if $\tau_t > \tau^\star(A_t,i_t)$

MA budget constraint:

$$\begin{split} M_t - M_{t-1} = \overbrace{(A_t - A_{t-1})}^{\text{open mkt op}} + \overbrace{(\tau_t - \tau^*(A_t, i_t))}^{\text{helicopter drop}} \\ \geq -A_{t-1} \\ \boxed{\Rightarrow M_t \geq -N_{t-1}} \end{split}$$

Towards the Policy Game

► Monetary policy objective:

$$\max\sum_{t=0}^{\infty} e^{-\rho t} W(\pi_t, y_t)$$

where

$$W(\pi,y)=-\Big[(1-\phi)\pi^2+\phi y^2\Big]$$

Towards the Policy Game

Monetary policy objective:

$$\max\sum_{t=0}^{\infty} e^{-\rho t} W(\pi_t, y_t)$$

where

$$W(\pi, y) = -\left[(1 - \varphi)\pi^2 + \varphi y^2\right]$$

▶ Fiscal policy: choose $\{B_t, T_t\}$ such that FA budget holds and

$$\lim_{t\to\infty}\frac{B_t+M_t-A_t}{\prod_{s=0}^t(1+\iota_s)}=0,$$

A Liquidity Trap Scenario

One-period discount rate shock:

$$\xi_t = \begin{cases} \tilde{\xi} < 0; & \text{ if } t = 0, \\ 0; & \text{ otherwise.} \end{cases}$$

Start with $N_{-1} > 0$.

A Liquidity Trap Scenario

One-period discount rate shock:

$$\xi_t = \begin{cases} \tilde{\xi} < 0; & \text{ if } t = 0, \\ 0; & \text{ otherwise.} \end{cases}$$

Start with $N_{-1} > 0$.

Commitment Solution

- Given N₋₁ > 0, find optimal {y_t, π_t, i_t}, ignoring balance sheet constraints.
- ► Helicopter drops irrelevant Details

Commitment Solution

- Given N₋₁ > 0, find optimal {y_t, π_t, i_t}, ignoring balance sheet constraints. Details
- Helicopter drops irrelevant Details
- ▶ If ZLB binds, maintain zero nominal rates for longer.

Commitment Solution

Problem: commitment solution is not time-consistent

• After $t \ge 1$, optimal to set $y_t = 0, \pi_t = 0, i_t = \rho$

(Krugman, 1998; Eggertsson and Woodford, 2003; Jung, Teranishi and Watanabe, 2005; Werning, 2011) Problem: commitment solution is not time-consistent

• After $t \ge 1$, optimal to set $y_t = 0, \pi_t = 0, i_t = \rho$

(Krugman, 1998; Eggertsson and Woodford, 2003; Jung, Teranishi and Watanabe, 2005; Werning, 2011)

Focus on Markov equilibria

No Commitment: No Balance Sheet Constraints

No Commitment: Balance Sheet Constraints

• Implementing (0, 0) alloc. at t = 1 requires M_1 such that:

 $M_1 = P_0 L(e^0, \rho)$

No Commitment: Balance Sheet Constraints

▶ Implementing (0,0) alloc. at t = 1 requires M_1 such that:

$$M_1 = P_0 L(e^0, \rho)$$

But balance sheet constraints require:

$$M_1 \geq -N_0$$

• MA at t = 0 can choose N_0 sufficiently low <u>to violate this</u>

• Making (0,0) not possible at t = 1!

No Commitment: Balance Sheet Constraints

▶ Implementing (0,0) alloc. at t = 1 requires M_1 such that:

$$M_1 = P_0 L(e^0, \rho)$$

▶ But balance sheet constraints require:

$$M_1 \geq -N_0$$

▶ MA at t = 0 can choose N₀ sufficiently low <u>to violate this</u>

• Making (0, 0) not possible at t = 1!

But then, what happens? And what is the optimal N_0 ?

Markov Equilibrium with Balance Sheet Constraints

State variable: $n_{t-1} \equiv (A_{t-1} - M_{t-1})/P_{t-1}$

• Stationary case for $t \ge 1$: $\xi_t = 0$ for all t

• Liquidity trap problem at
$$t = 0$$

Denote by $\mathcal{Y}(n)$ and $\Pi(n)$ private sector expectations

Markov equilibrium: The Stationary Case

Monetary Authority's Problem

$$V(n) = \max_{\substack{(y,\pi,i,n' \in \Omega)}} W(\pi, y) + \beta V(n')$$

subject to:
$$y = \mathcal{Y}(n') - \sigma(i - \Pi(n') - \rho)$$
$$\pi = \beta \Pi(n') + \kappa y$$
$$i \ge 0$$
$$L(e^{y}, i) \ge -n' \text{ if } i > 0$$
$$n' \le e^{-\pi}n \quad (\text{strict} \Rightarrow \text{helicopter drop})$$

Monetary Authority's Problem

$$\begin{split} \mathcal{V}(n) &= \max_{(y,\pi,i,n'\in\Omega)} \mathcal{W}(\pi,y) + \beta \mathcal{V}(n') \\ \text{subject to:} \\ y &= \mathcal{Y}(n') - \sigma(i - \Pi(n') - \rho) \\ \pi &= \beta \Pi(n') + \kappa y \\ i &\geq 0 \\ L(e^y,i) &\geq -n' \text{ if } i > 0 \\ n' &\leq e^{-\pi}n \quad (\text{strict} \Rightarrow \text{helicopter drop}) \end{split}$$

Monetary Authority's Problem

$$V(n) = \max_{\substack{(y,\pi,i,n' \in \Omega)}} W(\pi,y) + \beta V(n')$$

subject to:
$$y = \mathcal{Y}(n') - \sigma(i - \Pi(n') - \rho)$$
$$\pi = \beta \Pi(n') + \kappa y$$
$$i \ge 0$$
$$L(e^y, i) \ge -n' \text{ if } i > 0$$
$$n' \le e^{-\pi} n \quad (\text{strict} \Rightarrow \text{helicopter drop})$$

▶ Detals

V (weakly) increasing in n

Markov equilibrium

V, \mathcal{Y} , Π such that V is the value function in MA's problem given \mathcal{Y} and Π ; and \mathcal{Y} and Π are themselves optimal policy functions.

High net worth

Recall first best: $\{y_t, \pi_t\} = (0, 0)$ and $m = L(e^0, \rho)$ Define $n^* \equiv -L(e^0, \rho)$

Good equilibria

Suppose that for all $n \ge n^*$, $\mathcal{Y}(n) = 0$ and $\Pi(n) = 0$. Then for $n \ge n^*$, (0, 0) solve MA's problem

There are also deflationary trap equilibria (Benhabib et al. 2001; Armenter, 2018)

We will focus on the good equilibria Paper discusses how the traps can be ruled out

For $n < n^*$, the first-best outcome $\{0, 0\}$ is not feasible.

No Helicopter Drops in Stationary Case

Suppose that $\Pi(n)$, $\mathcal{Y}(n)$ are weakly decreasing and that $\Pi(n)$ is strictly decreasing for $n < n^*$. For $n < n^*$, the optimum features $\mathbf{n}' = \mathbf{e}^{-\pi}\mathbf{n}$.

No Helicopter Drops in Stationary Case

Suppose that $\Pi(n)$, $\mathcal{Y}(n)$ are weakly decreasing and that $\Pi(n)$ is strictly decreasing for $n < n^*$. For $n < n^*$, the optimum features $\mathbf{n}' = \mathbf{e}^{-\pi}\mathbf{n}$.

$$y = \mathcal{Y}(n') - \sigma(i - \Pi(n') - \rho)$$
$$\pi = \beta \Pi(n') + \kappa y_t$$

No Helicopter Drops in Stationary Case

Suppose that $\Pi(n)$, $\mathcal{Y}(n)$ are weakly decreasing and that $\Pi(n)$ is strictly decreasing for $n < n^*$. For $n < n^*$, the optimum features $\mathbf{n'} = \mathbf{e}^{-\pi}\mathbf{n}$.

$$y = \mathcal{Y}(n') - \sigma(-\Pi(n') - \rho) > 0$$

$$\pi = \beta \Pi(n') + \kappa y_t > 0$$

If solution features i = 0:

- ► Solution features $\pi > 0, y > 0$
- Suppose n' < e^{-π}n. Then, ↑ n' lowers π, y (& increase V(n')) ⇒ improves welfare

No Helicopter Drops in Stationary Case

Suppose that $\Pi(n)$, $\mathcal{Y}(n)$ are weakly decreasing and that $\Pi(n)$ is strictly decreasing for $n < n^*$. For $n < n^*$, the optimum features $\mathbf{n}' = \mathbf{e}^{-\pi}\mathbf{n}$.

$$y = \mathcal{Y}(n') - \sigma(i - \Pi(n') - \rho)$$
$$\pi = \beta \Pi(n') + \kappa y_t > 0$$

If solution features i > 0:

- ▶ First, note at the optimum $\pi > 0$: If $\pi \le 0 \Rightarrow y < 0$. But then optimal to $\downarrow i$
- Suppose $n' < e^{-\pi}n$. Then, MA can $\uparrow n'$ and $\downarrow i$, keep same y and reduce π (& increase V(n')) \Rightarrow improves welfare

No Helicopter Drops in Stationary Case

Suppose that $\Pi(n)$, $\mathcal{Y}(n)$ are weakly decreasing and that $\Pi(n)$ is strictly decreasing for $n < n^*$. For $n < n^*$, the optimum features $\mathbf{n'} = \mathbf{e}^{-\pi}\mathbf{n}$.

$$y = \mathcal{Y}(n') - \sigma(i - \Pi(n') - \rho)$$
$$\pi = \beta \Pi(n') + \kappa y_t > 0$$

If solution features i > 0:

- First, note at the optimum π > 0: If π ≤ 0 ⇒ y < 0. But then optimal to ↓ i
- Suppose $n' < e^{-\pi}n$. Then, MA can $\uparrow n'$ and $\downarrow i$, keep same y and reduce π (& increase V(n')) \Rightarrow improves welfare

Constrain future policies by MA without any benefits today

Low net worth (ctd)

$$L(e^{y},i) \geq -n', \quad n' \leq e^{-\pi}n$$

Low net worth (ctd)

Recall

$$L(e^{y},i) \geq -n', \quad n' = e^{-\pi}n$$

$$e^{\pi}L(e^{y},i) \geq -n$$

Low net worth (ctd)

Recall

$$L(e^{y},i) \geq -n', \quad n' = e^{-\pi}n$$

$$e^{\pi}L(e^{y},i) \geq -n$$

• Lower n requires a combination of higher (π, y) and lower i

• Let
$$L(y, i) = \theta e^{\alpha y - \eta i}$$

• Modified state:
$$k \equiv -\log(-n) + \log(-n^*)$$

• Let
$$L(y, i) = \theta e^{\alpha y - \eta i}$$

• Modified state: $k \equiv -\log(-n) + \log(-n^*)$

Linear equilibria:

for k < 0 (and such that i > 0):

$$\mathcal{Y}(k) = ak$$
, $\Pi(k) = bk$, $V(k) = -\nu k^2$

for $k \ge 0$:

$$\mathcal{Y}(k) = \Pi(k) = V(k) = 0$$

Cannot prove existence/uniqueness in general

But conditions are easy to check given parameters

• Let
$$L(y, i) = \theta e^{\alpha y - \eta i}$$

• Modified state: $k \equiv -\log(-n) + \log(-n^*)$

Linear equilibria:

for k < 0 (and such that i > 0):

$$\mathcal{Y}(k) = ak$$
, $\Pi(k) = bk$, $V(k) = -\nu k^2$

for $k \ge 0$:

$$\mathcal{Y}(k) = \Pi(k) = V(k) = 0$$

Cannot prove existence/uniqueness in general

But conditions are easy to check given parameters

► For our parameterization:

• Unique linear eqm with a < 0, b < 0, v > 0

Stationary Policies

Vertical line denotes n^*

Markov Equilibrium: Period 0

$$\begin{split} \max_{\substack{(y,\pi,i,n'\in\Omega)}} W(\pi,y) + \beta V(n') \\ \text{subject to:} \\ y &= \mathcal{Y}(n') - \sigma(i - \Pi(n') - \rho - \tilde{\xi}) \\ \pi &= \beta \Pi(n') + \kappa y \\ i &\geq 0 \\ L(e^y,i) \geq -n' \text{ if } i > 0 \\ n' &\leq e^{-\pi}n \end{split}$$

$$\max_{y,\pi,i,n'\in\Omega} W(\pi,y) + \beta V(n')$$

subject to:
$$y = \mathcal{Y}(n') - \sigma(i - \Pi(n') - \rho - \tilde{\xi})$$
$$\pi = \beta \Pi(n') + \kappa y$$
$$i \ge 0$$
$$L(e^{y}, i) \ge -n' \text{ if } i > 0$$

$$\max_{\substack{(y,\pi,i,n'\in\Omega)}} W(\pi,y) + \beta V(n')$$

subject to:
$$y = \mathcal{Y}(n') - \sigma(i - \Pi(n') - \rho - \tilde{\xi})$$
$$\pi = \beta \Pi(n') + \kappa y$$
$$i = 0$$
$$L(e^y, i) \ge -n' \text{ if } i > 0$$

$$\max_{\substack{(y,\pi,i,n'\in\Omega)}} W(\pi,y) + \beta V(n')$$

subject to:
$$y = \mathcal{Y}(n') - \sigma(i - \Pi(n') - \rho - \tilde{\xi})$$
$$\pi = \beta \Pi(n') + \kappa y$$
$$i = 0$$

$$\max_{\substack{(y,\pi, n' \in \Omega)}} W(\pi, y) + \beta V(n')$$

subject to:
$$y = \mathcal{Y}(n') - \sigma(-\Pi(n') - \rho - \tilde{\xi})$$
$$\pi = \beta \Pi(n') + \kappa y$$

Initial values as a function of n_0 choice

Vertical line denotes n^*

Simulation Comparison

Simulation Comparison

Conclusion

- ▶ Theory of helicopter drops as a commitment device
- ▶ In the model: useful during a liquidity trap
- ► Caveats:
 - Commitment vs Flexibility
 - Balance sheet constraints modeled ad-hoc
 - Absence of MA reserves

Numerical Simulations

Calibration: $\rho = 0.01 \ \sigma = 0.5$. $\kappa = 0.35 \ \phi = 0.05$,

Money demand follows:

$$L(y, i) = \theta e^{y-\eta i}$$

Set $\eta = 0.5$ and $\theta = 0.10$ to match currency to GDP = 10%

Set $\tilde{\xi} = -0.12$ to generate output drop of 6% in liquidity trap Back

Irrelevance

Helicopter drops do not enlarge the set of PSE consistent with balance sheet constraints:

► PSE with helicopter drop ⇒ remove it and substitute with open mkt op.

(converse is not true)

Sufficient net worth

 $N_{-1} \ge 0 \Rightarrow$ For any $\{y_t, \pi_t, i_t\}$ that satisfies Euler, PC and ZLB, there exists a policy such the allocations belong to a PSE with balance sheet constraints.

• Can set $\tau_t = \tau_t^* \Rightarrow$ net worth stays constant. $N_t \equiv A_t - M_t > 0$ imply $A_t > 0$

Back

Monetary authority's Problem

$$n_{t-1} \equiv (A_{t-1} - M_{t-1}) / P_{t-1}$$

Two constraints:

$$A_t \ge 0$$
 and $N_t \le N_{t-1}$

Using $N_t = A_t - M_t$

$$\begin{split} M_t \geq -N_t &\Leftrightarrow m_t \geq -n_t \\ N_t \leq N_{t-1} &\Leftrightarrow n_t \leq e^{-\pi_t} n_{t-1} \end{split}$$

And $m_t = L(e^{y_t}, i_t)$ for $i_t > 0$.

