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This Paper

Theory:

▶ Helicopter drops can be useful during a liquidity trap

When the Central Bank

▶ faces balance sheet constraints, and

▶ cannot commit

Key mechanism: ↑ i are restricted by central bank net worth

▶ Cannot reduce M without assets

Helps with the time inconsistency problem at the ZLB

Complementary to other policies, such as QE

▶ Bhattarai, Eggertsson and Gafarov, 2022
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Monetary Authority

▶ Accumulates risk-free assets A

▶ Issues monetary liabilities M

▶ Transfers τt to �scal authority

Mt−1 +
At

1+ ιt
+ τt = Mt +At−1.

De�ne nominal operating pro�ts as

τ⋆(A, ι) ≡ ι

1+ ι
A

De�ne nominal networth as Nt ≡ At −Mt.

Remark: Nt < Nt−1 if and only if τt > τ⋆(At, ιt)
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Monetary Authority (ctd)

Two balance-sheet constraints:

(1) Remittance constraint: τt ≥ τ⋆(At, ιt) ⇒ Nt ≤ Nt−1

(2) Non-negative asset holdings: At ≥ 0
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Fiscal Authority

▶ Bt: Nominal debt

▶ Tt: Lump-sum transfer to households

▶ Budget constraint:

Bt−1 + Tt =
Bt

1+ ιt
+ τt

Let it ≡ log(1+ ιt). yt ≡ log(Yt/Y), πt ≡ log(Pt/Pt−1)
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Households / Firms

Households

▶ Issues bonds At, accumulates gov. bonds Bt

▶ CRRA, with money in the utility function, separable.

▶ ξt discount rate shock.

Firms

▶ Phillips curve:

πt = βπt+1 + κyt,
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Private Sector Equilibrium (PSE)

PSE: A sequence {yt, πt, it, Pt, Mt, At, Bt, τt, Tt}

yt = yt+1 − σ(it − πt+1 − ρ− ξt)

it ≥ 0

Mt

Pt
≥ L(yt, it); with equality if it > 0

πt = βπt+1 + κyt

Budget constraints hold, and HH transversality:

lim
t→∞ Bt −At +Mt∏t

s=0(1+ ιs)
= 0
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Helicopter Drops

PSE consistent with balance sheet constraints if:

τt ≥ τ⋆(At, it)

At ≥ 0

De�nition: Helicopter drop at time t if τt > τ⋆(At, it)

▶ Equivalent: transfer τ∗ to FA and remaining to households

MA budget constraint:

Mt −Mt−1 =

open mkt op︷ ︸︸ ︷
(At −At−1)+

helicopter drop︷ ︸︸ ︷
(τt − τ⋆(At, it))

≥ −At−1

⇒ Mt ≥ −Nt−1
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Towards the Policy Game

▶ Monetary policy objective:

max
∞∑
t=0

e−ρtW(πt, yt)

where

W(π, y) = −
[
(1−φ)π2 +φy2

]

▶ Fiscal policy: choose {Bt, Tt} such that FA budget holds and

lim
t→∞ Bt +Mt −At∏t

s=0(1+ ιs)
= 0,
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A Liquidity Trap Scenario

One-period discount rate shock:

ξt =

{
~ξ < 0; if t = 0,

0; otherwise.

Start with N−1 > 0.
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Commitment Solution

▶ Given N−1 > 0, �nd optimal {yt, πt, it}, ignoring balance

sheet constraints. Details

▶ Helicopter drops irrelevant Details

▶ If ZLB binds, maintain zero nominal rates for longer.
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Commitment Solution
Output In
ation

Nominal Rate

Calibration
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Problem: commitment solution is not time-consistent

▶ After t ≥ 1, optimal to set yt = 0, πt = 0, it = ρ

(Krugman, 1998; Eggertsson and Woodford, 2003; Jung,

Teranishi and Watanabe, 2005; Werning, 2011)

Focus on Markov equilibria
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No Commitment: No Balance Sheet Constraints

Output In
ation

Nominal Rate
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No Commitment: Balance Sheet Constraints

▶ Implementing (0, 0) alloc. at t = 1 requires M1 such that:

M1 = P0L(e
0, ρ)

▶ But balance sheet constraints require:

M1 ≥ −N0

▶ MA at t = 0 can choose N0 su�ciently low to violate this

▶ Making (0, 0) not possible at t = 1!

But then, what happens? And what is the optimal N0?
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Markov Equilibrium with Balance Sheet
Constraints

State variable: nt−1 ≡ (At−1 −Mt−1)/Pt−1

▶ Stationary case for t ≥ 1: ξt = 0 for all t

▶ Liquidity trap problem at t = 0

Denote by Y(n) and Π(n) private sector expectations
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Markov equilibrium: The Stationary Case
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Monetary Authority's Problem

V(n) = max
(y,π,i,n ′∈Ω)

W(π, y) + βV(n ′)

subject to:

y = Y(n ′) − σ(i− Π(n ′) − ρ)

π = βΠ(n ′) + κy

i ≥ 0

L(ey, i) ≥ −n ′ if i > 0

n ′ ≤ e−πn (strict ⇒ helicopter drop)

Detals

V (weakly) increasing in n
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Markov equilibrium

V, Y, Π such that V is the value function in MA's problem given

Y and Π; and Y and Π are themselves optimal policy functions.
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High net worth

Recall �rst best: {yt, πt} = (0, 0) and m = L(e0, ρ)

De�ne n⋆ ≡ −L(e0, ρ)

Good equilibria

Suppose that for all n ≥ n⋆, Y(n) = 0 and Π(n) = 0.

Then for n ≥ n⋆, (0, 0) solve MA's problem

There are also de
ationary trap equilibria (Benhabib et al.

2001; Armenter, 2018)

We will focus on the good equilibria Paper discusses how the

traps can be ruled out
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Low net worth

For n < n⋆, the �rst-best outcome {0, 0} is not feasible.

No Helicopter Drops in Stationary Case

Suppose that Π(n), Y(n) are weakly decreasing and that Π(n)

is strictly decreasing for n < n⋆. For n < n⋆, the optimum

features n ′ = e−πn.

Constrain future policies by MA without any bene�ts today

19
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Low net worth (ctd)

Recall

L(ey, i) ≥ −n ′, n ′ ≤ e−πn

eπL(ey, i) ≥ −n

▶ Lower n requires a combination of higher (π, y) and lower i
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Linear equilibria

▶ Let L(y, i) = θeαy−ηi

▶ Modi�ed state: k ≡ − log(−n) + log(−n⋆)

Linear equilibria:

for k < 0 (and such that i > 0):

Y(k) = ak, Π(k) = bk, V(k) = −vk2

for k ≥ 0:

Y(k) = Π(k) = V(k) = 0

▶ Cannot prove existence/uniqueness in general

▶ But conditions are easy to check given parameters

▶ For our parameterization:

▶ Unique linear eqm with a < 0, b < 0, v > 0

21
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Stationary Policies

Output Y(n) In
ation Π(n) Nominal Rate, i

n ′ V

Vertical line denotes n⋆
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Markov Equilibrium: Period 0
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Monetary Authority's Problem in a Liquidity Trap

max
(y,π,i,n ′∈Ω)

W(π, y) + βV(n ′)

subject to:

y = Y(n ′) − σ(i− Π(n ′) − ρ− ~ξ)

π = βΠ(n ′) + κy

i ≥ 0

L(ey, i) ≥ −n ′ if i > 0

n ′ ≤ e−πn
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Initial values as a function of n0 choice

y0 π0

W0 V0

Vertical line denotes n⋆
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Simulation Comparison

Output In
ation

Nominal Rate
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Simulation Comparison

Output In
ation

Nominal Rate
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Conclusion

▶ Theory of helicopter drops as a commitment device

▶ In the model: useful during a liquidity trap

▶ Caveats:
▶ Commitment vs Flexibility

▶ Balance sheet constraints modeled ad-hoc

▶ Absence of MA reserves
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Numerical Simulations

Calibration: ρ = 0.01 σ = 0.5. κ = 0.35 φ = 0.05,

Money demand follows:

L(y, i) = θey−ηi

Set η = 0.5 and θ = 0.10 to match currency to GDP =10%

Set ~ξ = −0.12 to generate output drop of 6% in liquidity trap
Back
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Irrelevance

Helicopter drops do not enlarge the set of PSE consistent with

balance sheet constraints:

▶ PSE with helicopter drop ⇒ remove it and substitute with

open mkt op.

(converse is not true)

Back

3



Su�cient net worth

N−1 ≥ 0 ⇒ For any {yt, πt, it} that satis�es Euler, PC and ZLB,

there exists a policy such the allocations belong to a PSE with

balance sheet constraints.

▶ Can set τt = τ∗t ⇒ net worth stays constant.

Nt ≡ At −Mt > 0 imply At > 0

Back
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Monetary authority's Problem

nt−1 ≡ (At−1 −Mt−1)/Pt−1

Two constraints:

At ≥ 0 and Nt ≤ Nt−1

Using Nt = At −Mt

Mt ≥ −Nt ⇔ mt ≥ −nt

Nt ≤ Nt−1 ⇔ nt ≤ e−πtnt−1

And mt = L(eyt , it) for it > 0.

Back
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	Appendix

